Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Neurosci ; : 1-13, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315119

RESUMEN

BACKGROUND: As a traditional medical therapy, electroacupuncture (EA) has been demonstrated to have beneficial effects on ischemic stroke-induced cognitive impairment. However, the underlying mechanism is largely unclear. METHODS: Adult rats received occlusion of the middle cerebral artery and reperfusion (MCAO/R) to establish the ischemic stroke model. Morris water maze test was performed following EA stimulation at the GV20, PC6, and KI1 acupoints in rats to test the learning and memory ability. Western blot, immunofluorescent staining, and enzyme-linked immunosorbent assay were conducted to assess the cellular and molecular mechanisms. RESULTS: EA stimulation attenuated neurological deficits. In the Morris water maze test, EA treatment ameliorated the MCAO/R-induced learning and memory impairment. Moreover, we observed that MCAO/R induced microglial activation and polarization in the ischemic hippocampus, whereas, EA treatment dampened microglial activation and inhibited M1 microglial polarization but enhanced M2 microglial polarization. EA treatment inhibited the increased expression of proinflammatory cytokines and enhanced the increased expression of anti-inflammatory cytokines. Finally, we found that EA treatment dampened microglial p38 mitogen-activated protein kinase (MAPK) phosphorylation. CONCLUSION: Collectively, our data suggested that EA treatment ameliorated cognitive impairment induced by MCAO/R and the underlying mechanism may be p38-mediated microglia polarization and neuroinflammation.

2.
Am J Chin Med ; 50(2): 511-523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35114912

RESUMEN

Activation of the hepatic stellate cell is implicated in pathological vascularization during development of liver fibrosis. MAPK signaling is involved in the activation of hepatic stellate cell. Oxidative stress and inflammation are also involved in the pathogenesis of liver fibrosis. Notoginsenoside R1 is an effective saponin isolated from the roots of Panax notoginseng (Burk) F. H. Chen and exerts anti-oxidant, anti-inflammatory and anti-fibrotic roles in various diseases. However, the role of Notoginsenoside R1 in liver fibrosis has not been investigated yet. First, a rat model with liver fibrosis was established through oral gavage administration with carbon tetrachloride. Data from hematoxylin and eosin (H&E) and Masson's trichrome stainings showed that carbon tetrachloride induced severe hepatic damages, including inflammatory cell infiltration, lipid droplets deposition in hepatocytes and liver centrilobular necrosis. Meanwhile, the rats were also intraperitoneal injected with different concentrations of Notoginsenoside R1. Results demonstrated that Notoginsenoside R1 treatment suppressed the pathological changes in the livers with enhanced levels of ALB and TP, and reduced levels of ALP, AST and ALT. Second, Notoginsenoside R1 also significantly attenuated carbon tetrachloride-induced decrease in PPAR-[Formula: see text] and increase in Coll-a1, [Formula: see text]-SMA and TIMP1 in liver tissues ([Formula: see text][Formula: see text] 0.001). Third, the decrease in GSH, SOD and GST and increase in MDA, IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] induced by carbon tetrachloride were markedly restored by Notoginsenoside R1 ([Formula: see text][Formula: see text] 0.001). Lastly, Notoginsenoside R1 counteracted with the promotive effects of carbon tetrachloride on levels of proteins involved in MAPK signaling, including phosphorylated p65 (p-p65), p-ERK, p-JNK and p-p38. In conclusion, Notoginsenoside R1 suppressed the activation of hepatic stellate cells and exerted anti- oxidant and anti-inflammatory to attenuate carbon tetrachloride-induced liver fibrosis through inactivation of NF-[Formula: see text]B and MAPK signaling.


Asunto(s)
Panax notoginseng , Animales , Tetracloruro de Carbono/efectos adversos , Ginsenósidos , Células Estrelladas Hepáticas , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Ratas , Transducción de Señal
3.
Appl Biochem Biotechnol ; 172(6): 3253-62, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24510464

RESUMEN

TWIK-related acid-sensitive potassium channels (TASK3) are pharmacological targets of CNS inflammation induced by acidification. They function as molecular switches between survival and death of neurons. In this report, TASK3 cloned from human brain cDNA was tagged with enhanced green fluorescent protein (eGFP), and the fusion gene was transiently expressed in human neuroblastoma SH-SY5Y cells. A cell line stably expressing TASK-eGFP fusion proteins was generated from transient expression cells by using fluorescence-activated cell sorting followed by antibiotic selection. The uniform expression of TASK3 fusion proteins was further confirmed by flow cytometry. Moreover, the localization of TASK3 tagged with eGFP was checked by confocal microcopy. TASK3-eGFP fusion proteins are observed on the SH-SY5Y cell membrane. The strategies using eGFP as a fusion tag facilitate the monitoring of the TASK3 expression and enable the successful employment of FACS for screening and construction of cell lines stably expressing TASK3. The TASK3 overexpression cell line will lay a fundamental for the in vitro evaluation of TASK3 function during hypoxic/ischemic injury.


Asunto(s)
Expresión Génica , Canales de Potasio de Dominio Poro en Tándem/genética , Proteínas Recombinantes de Fusión/genética , Química Encefálica , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Microscopía Confocal , Neuronas/citología , Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA