Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-16, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632305

RESUMEN

Danzhi-xiaoyao-San (DZXYS), a Traditional Chinese Medicine, plays an essential role in the clinical treatment of depression, but its mechanisms in humans remain unclear. To investigate its pharmacological effects and mechanisms as an add-on therapy for depression, we conducted a double-blind, placebo-controlled trial with depressed patients receiving selective serotonin reuptake inhibitors (SSRIs). Serum and fecal samples were collected for metabolomic and microbiome analysis using UHPLC-QTRAP-MS/MS and 16S rRNA gene sequencing technologies, respectively. Depression symptoms were assessed using the 24-item Hamilton Depression Scale. We employed network pharmacology, metabolomics, and molecular docking to identify potential targets associated with DZXYS. We also examined the correlation between gut microbes and metabolites to understand how DZXYS affects the microbiota-gut-brain axis. The results showed that DZXYS combined with SSRIs was more effective than SSRIs alone in improving depression. We identified 39 differential metabolites associated with DZXYS treatment and found seven upregulated metabolic pathways. The active ingredients quercetin and luteolin were docked to targets (AVPR2, EGFR, F2, and CDK6) associated with the enriched pathways 'pancreatic cancer' and 'phospholipase D signaling pathway', which included the metabolite lysophosphatidic acid [LPA(0:0/16:0)]. Additionally, we identified 32 differential gut microbiota species related to DZXYS treatment, with Bacteroides coprophilus and Ruminococcus gnavus showing negative correlations with specific metabolites such as L-2-aminobutyric acid and LPA(0:0/16:0). Our findings indicate that DZXYS's antidepressant mechanisms involve multiple targets, pathways, and the regulation of LPA and the microbiota-gut-brain axis. These insights from our systems pharmacology analysis contribute to a better understanding of DZXYS's potential pharmacological mechanisms in depression treatment.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSThis study presents a double-blind, randomized, placebo-controlled clinical trial comparing the clinical effects of Danzhi-xiaoyao-San (DZXYS) plus selective serotonin reuptake inhibitors (SSRIs) and SSRIs alone.This study is the first system pharmacology approach to integrate multi-omics and network pharmacology and examine the clinical pharmacological mechanisms of DZXYS as an add-on therapy for depression.This study highlights that regulation of lysophosphatidic acid (LPA) and the microbiota-gut-brain axis by DZXYS plays an essential role in its antidepressant mechanisms.

2.
Front Pharmacol ; 12: 687757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239441

RESUMEN

Background: Emerging evidence implicates the dysregulated kynurenine pathway (KP), an immune-inflammatory pathway, in the pathophysiology of mood disorders (MD), including depression and bipolar disorder characterized by a low-grade chronic pro-inflammatory state. The metabolites of the KP, an important part of the microbiota-gut-brain axis, serve as immune system modulators linking the gut microbiota (GM) with the host central nervous system. Aim: This bibliometric analysis aimed to provide a first glimpse into the KP in MD, with a focus on GM research in this field, to guide future research and promote the development of this field. Methods: Publications relating to the KP in MD between the years 2000 and 2020 were retrieved from the Scopus and Web of Science Core Collection (WoSCC), and analyzed in CiteSpace (5.7 R5W), biblioshiny (using R-Studio), and VOSviewer (1.6.16). Results: In total, 1,064 and 948 documents were extracted from the Scopus and WoSCC databases, respectively. The publications have shown rapid growth since 2006, partly owing to the largest research hotspot appearing since then, "quinolinic acid." All the top five most relevant journals were in the neuropsychiatry field, such as Brain Behavior and Immunity. The United States and Innsbruck Medical University were the most influential country and institute, respectively. Journal co-citation analysis showed a strong tendency toward co-citation of research in the psychiatry field. Reference co-citation analysis revealed that the top four most important research focuses were "kynurenine pathway," "psychoneuroimmunology," "indoleamine 2,3-dioxygenase," and "proinflammatory cytokines," and the most recent focus was "gut-brain axis," thus indicating the role of the KP in bridging the GM and the host immune system, and together reflecting the field's research foundations. Overlap analysis between the thematic map of keywords and the keyword burst analysis revealed that the topics "Alzheimer's disease," "prefrontal cortex," and "acid," were research frontiers. Conclusion: This comprehensive bibliometric study provides an updated perspective on research associated with the KP in MD, with a focus on the current status of GM research in this field. This perspective may benefit researchers in choosing suitable journals and collaborators, and aid in the further understanding of the field's hotspots and frontiers, thus facilitating future research.

3.
J Ethnopharmacol ; 214: 13-21, 2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-29217494

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyao San (XYS) is a classic Chinese herbal formula for treatment of depression. The present study aimed to investigate the antidepressant effects of XYS in a rat model of chronic unpredictable mild stress (CUMS) and the underlying mechanisms. MATERIALS AND METHODS: A CUMS rat model of depression was established via 4 weeks of unpredictable stimulation. Then the rats were orally administered paroxetine and XYS for 2 weeks with continued stress. Behavioral assessments, including an open field test (OFT), sucrose preference test (SPT) and forced swim test (FST), were conducted to evaluate the antidepressant effects of XYS. The concentrations in rat plasma of tryptophan (Trp) and its metabolic products, including kynurenine (Kyn) and quinolinic acid (QUIN), were determined using high performance liquid chromatography tandem mass spectrometry with electrochemical detection (HPLC-MS/MS). The mRNA and protein levels in rat hippocampus of depression-related brain derived neurotrophic factor (BDNF), cyclic AMP response element binding protein (CREB) and nerve cell adhesion molecule (NCAM) were determined by real-time qPCR and Western blot, respectively. Enzyme Linked Immunosorbent Assay (ELISA) was used to detect the activities of indoleamine 2,3-dioxygenase (IDO) and kynurenine-3-monooxygenase (KMO) in rat plasma. RESULTS: The results showed that a successful CUMS rat model was established through 4 weeks of continuous unpredictable stimulation, as indicated by the significant decrease in locomotor activity and increase in immobility time in the OFT, reduction in body weight and food intake etc. Compared with the normal group, the concentrations of Kyn and QUIN had significantly (p < 0.05) decreased at day 28 in the control group, but then improved after drug treatment with paroxetine and XYS. There were no obvious changes in the activities of IDO and KMO. Compared with the normal group, the mRNA of NCAM, CREB and BDNF were significantly down-regulated (p < 0.001) in the control group, BDNF gene was up-regulated by paroxetine or XYS treatment, NCAM and CREB gene did not change in XYS group, protein expressions of BDNF and CREB were significantly increased, and NCAM was significantly reduced (p < 0.05). CONCLUSIONS: XYS reversed the abnormalities of the tryptophan-kynurenine metabolic pathways in depressed rats and achieved an excellent antidepressant effect. Its direct impact may be observed as changes in biological indicators in rat hippocampus tissue.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Hipocampo/efectos de los fármacos , Quinurenina/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Depresión/psicología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/metabolismo , Hipocampo/fisiopatología , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/sangre , Quinurenina 3-Monooxigenasa/genética , Quinurenina 3-Monooxigenasa/metabolismo , Locomoción/efectos de los fármacos , Masculino , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácido Quinolínico/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA