Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Parasitol ; 68(4): 832-841, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831282

RESUMEN

BACKGROUND: As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC50 of 4.17 ± 0.22 µg/ml. The toxicity test results showed that the heartbeat, somite formation, tail detachment and hatching of embryos were not affected when Zebra fish embryos were treated with 0.1 to 10 µg/ml of the extract. However, at higher concentrations of the extract, at 48 h (1000 µg/ml) and 96 h (100 µg/ml and 1000 µg/ml, respectively) there was no heartbeat in the fish embryos. In the acute oral toxicity tests performed on mice, the extract showed no toxicity up to 300 mg/kg body weight in mice. CONCLUSION: The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.


Asunto(s)
Anacardium , Antimaláricos , Malaria Falciparum , Malaria , Animales , Ratones , Antimaláricos/toxicidad , Plasmodium falciparum , Transcetolasa/uso terapéutico , Pez Cebra , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Extractos Vegetales/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-32071059

RESUMEN

We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 µM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 µM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 µM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.


Asunto(s)
Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Fragmentación del ADN/efectos de los fármacos , Humanos , Merozoítos/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Esquizontes/efectos de los fármacos , Trofozoítos/efectos de los fármacos
3.
J Biomol Struct Dyn ; 37(10): 2669-2677, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30052127

RESUMEN

Kunitz-type trypsin inhibitors bind to the active pocket of trypsin causing its inhibition. Plant Kunitz-type inhibitors are thought to be important in defense, especially against insect pests. From sequence analysis of various Kunitz-type inhibitors from plants, we identified CaTI2 from chickpea as a unique variant lacking the functionally important arginine residue corresponding to the soybean trypsin inhibitor (STI) and having a distinct and unique inhibitory loop organization. To further explore the implications of these sequence variations, we obtained the crystal structure of recombinant CaTI2 at 2.8Å resolution. It is evident from the structure that the variations in the inhibitory loop facilitates non-substrate like binding of CaTI2 to trypsin, while the canonical inhibitor STI binds to trypsin in substrate like manner. Our results establish the unique mechanism of trypsin inhibition by CaTI2, which warrant further research into its substrate spectrum. Abbreviations BApNA Nα-Benzoyl-L-arginine 4-nitroanilide BPT bovine pancreatic trypsin CaTI2 Cicer arietinum L trypsin inhibitor 2 DrTI Delonix regia Trypsin inhibitor EcTI Enterolobium contortisiliquum trypsin inhibitor ETI Erythrina caffra trypsin inhibitor KTI Kunitz type inhibitor STI soybean trypsin inhibitor TKI Tamarindus indica Kunitz inhibitor Communicated By Ramaswamy H. Sarma.


Asunto(s)
Cicer/química , Modelos Moleculares , Extractos Vegetales/química , Inhibidor de la Tripsina de Soja de Kunitz/química , Inhibidores de Tripsina/química , Tripsina/química , Secuencia de Aminoácidos , Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Bovinos , Cristalografía por Rayos X , Activación Enzimática , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales/farmacología , Unión Proteica , Conformación Proteica , Proteínas Recombinantes , Análisis Espectral , Relación Estructura-Actividad , Inhibidor de la Tripsina de Soja de Kunitz/farmacología , Inhibidores de Tripsina/farmacología
4.
J Med Chem ; 61(13): 5664-5678, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29779382

RESUMEN

The dependence of drug potency on diastereomeric configurations is a key facet. Using a novel general divergent synthetic route for a three-chiral center antimalarial natural product cladosporin, we built its complete library of stereoisomers (cladologs) and assessed their inhibitory potential using parasite-, enzyme-, and structure-based assays. We show that potency is manifest via tetrahyropyran ring conformations that are housed in the ribose binding pocket of parasite lysyl tRNA synthetase (KRS). Strikingly, drug potency between top and worst enantiomers varied 500-fold, and structures of KRS-cladolog complexes reveal that alterations at C3 and C10 are detrimental to drug potency whereas changes at C3 are sensed by rotameric flipping of glutamate 332. Given that scores of antimalarial and anti-infective drugs contain chiral centers, this work provides a new foundation for focusing on inhibitor stereochemistry as a facet of antimicrobial drug development.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Isocumarinas/química , Isocumarinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/metabolismo , Evaluación Preclínica de Medicamentos , Isocumarinas/metabolismo , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/metabolismo , Modelos Moleculares , Plasmodium falciparum/enzimología , Conformación Proteica , Estereoisomerismo
5.
Artículo en Inglés | WPRIM | ID: wpr-819609

RESUMEN

OBJECTIVE@#To investigate the potentiality of mosquitocidal activity of Gliricidia sepium (G. sepium) (Jacq.) (Leguminosae).@*METHODS@#Twenty five early third instar larvae of Anopheles stephensi (An. stephensi) were exposed to various concentrations (50-250 ppm) and the 24 h LC(50) values of the G. sepium extract was determined by probit analysis. The ovicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm under laboratory conditions. The eggs hatchability was assessed 48 h post treatment. The pupicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm. Mortality of each pupa was recorded after 24 h of exposure to the extract.@*RESULTS@#Results pertaining to the experiment clearly revealed that ethanol extract showed significant larvicidal, ovicidal and pupicidal activity against the An. stephensi. Larvicidal activity of ethanol extracts of G. sepium showed maximum mortality in 250 ppm concentration (96.0±2.4)%. Furthermore, the LC(50) was found to be 121.79 and the LC(90) value was recorded to be 231.98 ppm. Ovicidal activity of ethanol extract was assessed by assessing the egg hatchability. Highest concentration of both solvent extracts exhibited 100% ovicidal activity. Similarly, pupae exposed to different concentrations of ethanol extract were found dead with 58.10% adult emergence when it was treated with 25 ppm concentration. Similarly, 18.36 (n=30; 61.20%); 21.28(70.93) and 27.33(91.10) pupal mortality was recorded from the experimental pupae treated with 50, 75 and 100 ppm concentration of extracts. Three fractions have been tested for their larvicidal activity of which the Fraction 3 showed the LC(50) and LC(90) values of 23.23 and 40.39 ppm. With regard to the ovicidal effect fraction 3 showed highest ovicidal activities than the other two fractions. Furthermore, there were no hatchability was recorded above 50 ppm (100% egg mortality) in the experimental group. Statistically significant pupicidal activity was recorded from 75 ppm concentration.@*CONCLUSIONS@#From the results it can be concluded the crude extract of G. sepium is an excellent potential for controlling An. stephensi mosquito. It is apparent that, fraction 3 possess a novel and active principle which could be responsible for those biological activities.


Asunto(s)
Animales , Humanos , Anopheles , Bioensayo , Fabaceae , Insectos Vectores , Insecticidas , Dosificación Letal Mediana , Estadios del Ciclo de Vida , Malaria , Control de Mosquitos , Métodos , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA