Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Colloid Interface Sci ; 650(Pt A): 526-540, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423180

RESUMEN

Tumor microenvironment (TME) stimuli-responsive nanoassemblies are emerging as promising drug delivery systems (DDSs), which acquire controlled release by structural transformation under exogenous stimulation. However, the design of smart stimuli-responsive nanoplatforms integrated with nanomaterials to achieve complete tumor ablation remains challenging. Therefore, it is of utmost importance to develop TME-based stimuli-responsive DDSs to enhance drug-targeted delivery and release at tumor sites. Herein, we proposed an appealing strategy to construct fluorescence-mediated TME stimulus-responsive nanoplatforms for synergistic cancer therapy by assembling photosensitizers (PSs) carbon dots (CDs), chemotherapeutic agent ursolic acid (UA), and copper ions (Cu2+). First, UA nanoparticles (UA NPs) were prepared by self-assembly of UA, then UA NPs were assembled with CDs via hydrogen bonding force to obtain UC NPs. After combining with Cu2+, the resulting particles (named UCCu2+ NPs) exhibited quenched fluorescence and photosensitization due to the aggregation of UC NPs. Upon entering the tumor tissue, the photodynamic therapy (PDT) and the fluorescence function of UCCu2+ were recovered in response to TME stimulation. The introduction of Cu2+ triggered the charge reversal of UCCu2+ NPs, thereby promoting lysosomal escape. Furthermore, Cu2+ resulted in additional chemodynamic therapy (CDT) capacity by reacting with hydrogen peroxide (H2O2) as well as by consuming glutathione (GSH) in cancer cells through a redox reaction, hence magnifying intracellular oxidative stress and enhancing the therapeutic efficacy due to reactive oxygen species (ROS) therapy. In summary, UCCu2+ NPs provided an unprecedented novel approach for improving the therapeutic efficacy through the three-pronged (chemotherapy, phototherapy, and heat-reinforced CDT) attacks to achieve synergistic therapy.


Asunto(s)
Productos Biológicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Humanos , Cobre/química , Carcinoma Hepatocelular/tratamiento farmacológico , Peróxido de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Glutatión , Microambiente Tumoral
2.
J Colloid Interface Sci ; 635: 441-455, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36599242

RESUMEN

Therapeutic modalities and drug formulations play a crucial and prominent role in actualizing effective treatment and radical cures of tumors. However, the therapeutic efficiency was severely limited by tumor recurrence and complex multi-step preparation of formulation. Therefore, the exploration of novel nanoparticles via a simple and green synthesis process for conquering traditional obstacles and improving therapeutic efficiency is an appealing, yet remarkably challenging task. Herein, a universal nanoplatform allows all cancerous cell-targeting, acid-responsive, cell imaging, synergistic chemotherapy, and nucleolar targeted phototherapy function was tactfully designed and constructed by using chemotherapeutic agents ursolic acid (UA), sorafenib (SF), and carbon dots (CDs) photosensitizers (PSs). The designed US NPs were formed by self-assembly of UA and SF associated with electrostatic, π-π stacking, and hydrophobic interactions. After hydrogen bonding reaction with CDs, the obtained (denoted as USC NPs) have a relatively uniform size of an average 125.6 nm, which facilitated the favorable accumulation of drugs at the tumor region through a potential enhanced permeability and retention (EPR) effect as compared to their counterpart of free CDs solution. Both in vitro and in vivo studies revealed that the advanced platform commenced synergistic anticancer therapeutic potency, imperceptible systematical toxicity, and remarkable reticence towards drug-resistant cancer cells. Moreover, the CDs PSs possess intrinsic nucleolus-targeting ability. Taken together, this theranostics system can fully play the role of "killing three birds with one stone" in a safe manner, implying a promising direction for exploring treatment strategies for cancer and endowing them with great potential for future translational research and providing a new vision for the advancing of an exceptionally forceful protocol for practical cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/química , Fototerapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nanopartículas/química , Línea Celular Tumoral
3.
Biomater Sci ; 10(21): 6267-6281, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36128848

RESUMEN

Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.


Asunto(s)
Dendrímeros , Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Verde de Indocianina/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Molécula de Adhesión Celular Epitelial , Doxorrubicina/farmacología , Preparaciones de Acción Retardada , Medicina de Precisión , Disulfiram , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/terapia , Ácido Láctico , Hipertermia Inducida/métodos , Liberación de Fármacos , Nanomedicina Teranóstica/métodos , Línea Celular Tumoral
4.
Am J Chin Med ; 50(3): 749-772, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450513

RESUMEN

The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications. Recently, much attention has been attached to ginsenosides, the most significant active components of ginseng, which have always been referred to as "all-healing" and widely used for its extensively medicinal value. Surprisingly, ginsenosides have diverse biological activity which might be related to inflammation, apoptosis, oxidative stress, and angiogenesis. In this review, a brief introduction about endothelial dysfunction and ginsenosides was demonstrated, and the emphasis was put on summarizing multi-faceted pharmacological effects and underlying molecular mechanisms of ginsenosides on the endothelium, including vasorelaxation, anti-oxidation, anti-inflammation, and angio-modulation. Beyond that, nanotechnology to improve efficacy and the existing clinical trials of ginsenosides were concluded. Hopefully, our work will give suggestions for promoting clinical application of traditional Chinese medicine, e.g., hypertension, AS, diabetes, ischemic stroke, and cancer. This review provides a comprehensive base of knowledge for ginsenosides to prevention and treatment of vascular injury- related diseases with clinical significance.


Asunto(s)
Ginsenósidos , Hipertensión , Neoplasias , Panax , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Humanos , Hipertensión/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas
5.
Colloids Surf B Biointerfaces ; 214: 112464, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35334311

RESUMEN

Cardiovascular disease remains the dominant contributor to human mortality, and the main etiology of which is atherosclerosis (AS). Enhancing the targeted ability of nanosystem and improving plaque stability are critical challenges for the current management of AS. Herein, we leverage the marked role of platelets in AS to construct a biomimetic nanodrug delivery system (PM@Se/Rb1 NPs), which prepared by cloaking platelet membrane (PM) around Selenium (Se) and ginsenoside Rb1 nanoparticles (Se/Rb1 NPs) core. The core endows the delivery system antioxidant, lipid metabolism and anti-inflammatory effects for AS effective treatment. Moreover, PM-coated nanoparticles reserve platelets' inherent biological elements to deliver drugs to plaques. We further explored the potential effect of PM@Se/Rb1 NPs' combination with the clinical anticoagulant drug warfarin (War) to treat AS and elucidated the possible drug interaction mechanism. As a result, the PM@Se/Rb1 NPs are not only capable of improving inflammatory behaviors such as inhibitory adhesion ability and anti-angiogenesis therapeutic effect in vitro, but also administer efficiently localizing to atherosclerotic plaque explaining by aortic samples from established ApoE-/- mice. Therefore, this study provided a theoretical basis of biomimetic nanodrug in the treatment of AS as well as an effective reference for the combined application of nanodrug and clinical drugs.


Asunto(s)
Aterosclerosis , Nanopartículas , Placa Aterosclerótica , Selenio , Animales , Aterosclerosis/tratamiento farmacológico , Biomimética , Plaquetas , Ginsenósidos , Ratones , Placa Aterosclerótica/tratamiento farmacológico , Selenio/farmacología
6.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112177, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34749194

RESUMEN

Rapamycin (RAPA) functions as effectively clinical immunosuppressive agent, its significant tumor growth suppression effect via various pathways in diverse cancers, especially combined with photothermal therapy, is gaining a burgeoning attention. However, its critical defects, low solubility and poor stability, have severely hampered its further application. Herein, RAPA, indocyanine green (ICG) and epigallocatechin gallate (EGCG) serving as chemotherapeutic drug, photosensitizer and biomimetic coatings, respectively, were co-assembled into carrier-free, high biocompatible ICG-RAPA-EGCG nanoparticles (IRE NPs) for synergistic cancer therapy. Particularly, the bioinspired EGCG coatings not only improved the stability of IRE NPs under physiological conditions to avert NPs disassembly and drug release, but also maintained the photostability of ICG to achieve excellent photothermal response. The results indicated that the as-prepared IRE NPs displayed good monodispersity and enhanced stability at various stored media after introducing of EGCG. Compared with monotherapy of RAPA or ICG, IRE NPs showed higher dose-dependent toxicity in MCF-7 cells, HepG2 cells and HeLa cells, especially plus near-infrared laser irradiation. Furthermore, IRE NPs exhibited quicker uptake in cells, higher accumulation in tumor region (even in 48 h) than free ICG and effectively inhibited tumor growth without side effect in H22 tumor-bearing mice. Collectively, the carrier-free IRE NPs provided a simply alternative approach to fabricate RAPA/photosensitizer co-loaded nanoparticles for combinatorial tumor therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Animales , Biomimética , Línea Celular Tumoral , Células HeLa , Humanos , Verde de Indocianina , Ratones , Fármacos Fotosensibilizantes , Fototerapia , Terapia Fototérmica , Polifenoles , Serina-Treonina Quinasas TOR
7.
ACS Appl Mater Interfaces ; 12(51): 57362-57372, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33301289

RESUMEN

The rapid development of CRISPR/Cas9 systems has opened up tantalizing prospects to sensitize cancers to chemotherapy using efficient targeted genome editing, but safety concerns and possible off-target effects of viral vectors remain a major obstacle for clinical application. Thus, the construction of novel nonviral tumor-targeting nanodelivery systems has great potential for the safe application of CRISPR/Cas9 systems for gene-chemo-combination therapy. Here, we report a polyamidoamine-aptamer-coated hollow mesoporous silica nanoparticle for the co-delivery of sorafenib and CRISPR/Cas9. The core-shell nanoparticles had good stability, enabled ultrahigh drug loading, targeted delivery, and controlled-release of the gene-drug combination. The nanocomplex showed >60% EGFR-editing efficiency without off-target effects in all nine similar sites, regulating the EGFR-PI3K-Akt pathway to inhibit angiogenesis, and exhibited a synergistic effect on cell proliferation. Importantly, the co-delivery nanosystem achieved efficient EGFR gene therapy and caused 85% tumor inhibition in a mouse model. Furthermore, the nanocomplex showed high accumulation at the tumor site in vivo and exhibited good safety with no damage to major organs. Due to these properties, the nanocomplex provides a versatile delivery approach for efficient co-loading of gene-drug combinations, allowing for precise gene editing and synergistic inhibition of tumor growth without apparent side effects on normal tissues.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Dióxido de Silicio/química , Sorafenib/uso terapéutico , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/toxicidad , Proteína 9 Asociada a CRISPR/genética , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Molécula de Adhesión Celular Epitelial/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Edición Génica , Genes erbB-1 , Humanos , Ratones , Nanopartículas/toxicidad , Poliaminas/química , Poliaminas/toxicidad , Porosidad , Transducción de Señal/efectos de los fármacos , Dióxido de Silicio/toxicidad
8.
Pharmacol Res ; 159: 105031, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562816

RESUMEN

Thrombosis initiated by abnormal platelet aggregation is a pivotal pathological event that precedes most cases of cardiovascular diseases (CVD). Recently, growing evidence indicates that platelet could be a potential target for CVD prevention. However, as the conventional antithrombotic management strategy, applications of current antiplatelet agents are somewhat limited by their various side effects, such as bleeding risk and drug resistance. Hence, efforts have been made to search for agents as complementary therapies. Ginsenoside, the principal active component extracted from Panax ginseng, has gained much attention for its regulations on multiple crucial events of platelet aggregation. From structural characteristics to clinical applications, this review anatomized the intrinsic structure-function relationship of antiplatelet potency of ginsenosides, and the involved signal pathways were specifically summarized. Additionally, the emphasis was placed on clinical studies that investigate the antithrombotic efficacy of ginsenosides in the treatment of CVD. Further, a broad overview of approaches for improving the bioavailability of ginsenosides was concluded. Limitations and prospects of current studies were also discussed. This study may provide some new insights into the systematic understanding of ginsenosides in CVD treatment and lay a foundation for future research.


Asunto(s)
Plaquetas/efectos de los fármacos , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Ginsenósidos/uso terapéutico , Músculo Liso Vascular/efectos de los fármacos , Neointima , Inhibidores de Agregación Plaquetaria/uso terapéutico , Agregación Plaquetaria/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Animales , Disponibilidad Biológica , Plaquetas/metabolismo , Fármacos Cardiovasculares/efectos adversos , Fármacos Cardiovasculares/farmacocinética , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/patología , Ginsenósidos/efectos adversos , Ginsenósidos/farmacocinética , Humanos , Estructura Molecular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/farmacocinética , Transducción de Señal , Relación Estructura-Actividad
9.
Eur J Pharm Sci ; 142: 105100, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31669385

RESUMEN

Warfarin and ginseng have been widely used in the treatment of cardiovascular diseases. However, the clinical safety and effectiveness of herb-drug combination treatment are still controversial. Therefore, it is very essential to probe the interaction between warfarin and ginseng. In this study, in vitro and in vivo study was carried out to demonstrate that whether there is an interaction between warfarin and ginsenosides (GS), which is the main component of ginseng. In vitro study showed that the adhesion ability between endothelial cells and matrigel/platelets was enhanced due to the up-regulating expression of intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) proteins by treatment of warfarin+GS combination compared to warfarin/GS treatment alone. Moreover, GS could weaken the anticoagulation effect of warfarin in hyperlipemia rats owning to the increased expression levels of coagulation factors and hepatic cytochrome P450 enzymes in plasma after long-term co-administration of warfarin with GS. The results of both in vitro and in vivo study demonstrated that there is a serious interaction between warfarin and ginseng, which may deteriorate atherosclerosis and thrombosis after combined use of warfarin and GS.


Asunto(s)
Anticoagulantes/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Ginsenósidos/farmacología , Interacciones de Hierba-Droga/fisiología , Warfarina/farmacología , Animales , Coagulación Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/metabolismo , Línea Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Panax/química , Extractos Vegetales/farmacología , Ratas , Trombosis/tratamiento farmacológico , Trombosis/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
10.
Int J Pharm ; 570: 118663, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31493497

RESUMEN

Nanoformulations with advantages in drug delivery, safety and pharmacodynamics have been booming as a promising strategy for cancer therapy. However, the traditional nanocarrier still suffers from the low drug loading capacity, potential systematic toxicity, unclear metabolism, and other uncertainties. To overcome these issues, carrier-free nanodrugs with desirable bioactivity were developed rapidly and drawn considerable attention. Meanwhile, the multifunctional self-delivery nanoarcheticture fabricated by a simple and "green" method, has significant advantages in synergistic cancer therapy and inhibition of multidrug resistant (MDR). Till now, carrier-free nanoparticles for tumor theranostics, phototherapy, chemotherapy, diagnose and synergistic therapy, have made outstanding progress. In this review, we make an integrated and exhaustive overview of lately reports on carrier-free nanodrug delivery systems formed by several active agents. We summarize the self-assembly and modified strategies, with emphasis on application superiority of carrier-free nanocrystal, and give new insight into the establishment of ideal nanosystems for cancer treatment.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos
11.
Acta Biomater ; 70: 197-210, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408311

RESUMEN

Nanosized drug delivery systems (NDDS) with photothermal therapy (PTT) and photodynamic therapy (PDT) have been extensively exploited to improve the therapeutic performance and bio-safety of chemotherapeutic drugs in cancer. In this work, a carrier-free nanodrug was developed by co-assembly of the anti-cancer agent ursolic acid (UA), an asialoglycoprotein receptor (ASGPR), which can recognize the target molecule lactobionic acid (LA), and the near-infrared (NIR) probe dye indocyanine green (ICG) to form UA-LA-ICG NPs by a simple and green self-assembly approach. The UA-LA-ICG NPs had suitable stability, showed controlled release profile of UA drugs, and exhibited preferable temperature response (∼59.4 °C) under laser irradiation (808 nm, 1 W/cm2). Compared with free ICG, the UA-LA-ICG NPs significantly enhanced the intracellular ICG uptake. Upon irradiation of the NIR laser, co-assembled nanodrugs demonstrated great performance as a reactive oxygen species (ROS) producer and exhibited more anti-proliferative activities on ASGPR-overexpressing HepG2 cells than ASGPR low-expressing HeLa cells. Meanwhile, in vivo NIR fluorescence imaging exhibited that the co-assembled nanodrugs were specifically targeted to the tumor by the active targeting property of LA, and its circulation time was much longer than that of free ICG. In addition, UA-LA-ICG NPs + NIR irradiation treatment displayed enhanced inhibitory effect on tumor growth in H22 tumor-bearing mice. Overall, the co-assembly of chemotherapeutic agent and photosensitizer by the self-assembly approach might open an alternative avenue and give inspiration to fabricate new carrier-free nanodrugs for cancer imaging and chemo-photo combination therapy. STATEMENT OF SIGNIFICANCE: The present study for the first time reported carrier-free nanoparticles (NPs) by co-assembly of a natural product ursolic acid (UA), an asialoglycoprotein receptor (ASGPR)-recognized sugar molecule lactobionic acid (LA), and the near-infrared dye indocyanine green (ICG) through a simple and green approach. The preparation process of nanodrugs is simple, rapid, effective, and labor-saving. The co-assembled nanodrugs were capable of stabilizing the ICG molecules and specifically targeting to the tumor, which could increase the tumor accumulation in cancer imaging and also enhance the efficacy of chemo-phototherapy.


Asunto(s)
Hipertermia Inducida , Neoplasias Experimentales , Imagen Óptica , Fotoquimioterapia , Triterpenos/farmacología , Animales , Receptor de Asialoglicoproteína/metabolismo , Células HeLa , Células Hep G2 , Humanos , Masculino , Ratones , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Especies Reactivas de Oxígeno/metabolismo , Triterpenos/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto , Ácido Ursólico
12.
Eur J Pharm Sci ; 111: 492-502, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29107835

RESUMEN

Combination with chemotherapeutic drug and gene therapy has been proven highly effective in suppressing tumor progression. Hence, an asialoglycoprotein receptor (ASGPR)-targeting nanodrug delivery system based on mesoporous silica (MSN) nanocarrier for co-delivery of sorafenib (SO) and vascular endothelial growth factor (VEGF) targeted siRNA (siVEGF) to hepatocellular carcinoma (HCC) was successfully designed and synthesized. The structure of nanoparticles was characterized by IR, particle size, zeta potential and N2 adsorption-desorption. The nanoparticles were further evaluated for drug release, cellular uptake, transfection, cell cytotoxicity and cell cycle against HepG2 and Huh7 cells. In vitro testing demonstrated that MSN-LA delivery system could not only induce S cell cycle arrest, enhance the cytotoxicity and improve the tumor target of SO and siVEGF, but also enhance the siVEGF transfection efficiency in ASGPR-overexpressing Huh7 cells. Overall, the MSN-LA delivery system can be a promising drug carrier which could further enhance the anti-cancer efficacy of SO and siVEGF via the active targeting property of LA.


Asunto(s)
Carcinoma Hepatocelular/terapia , Nanopartículas/química , Niacinamida/análogos & derivados , Compuestos de Fenilurea/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Dióxido de Silicio , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Neoplasias Hepáticas/terapia , Niacinamida/administración & dosificación , Interferencia de ARN , Sorafenib , Factor A de Crecimiento Endotelial Vascular/genética
13.
ACS Appl Mater Interfaces ; 9(50): 43508-43519, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29171263

RESUMEN

Phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted great attention. However, applications of some photosensitizers remain an obstacle by their poor photostability. To enhance the treatment efficiency of photosensitizers and tumor theranostic effect, herein, we reported a novel carrier-free, theranostic nanodrug by self-assembly of small molecule dual anticancer drugs and photosensitizer for tumor targeting. The developed carrier-free small molecule nanodrug delivery system was formed by hydrophobic ursolic acid, paclitaxel, and amphipathic indocyanine green (ICG) associated with electrostatic, π-π stacking, and hydrophobic interactions exhibiting water stability. The self-assembling of ICG on the dual anticancer nanodrug significantly enhanced water solubility of hydrophobic anticancer drugs and ICG photostability contributing to long-term near-infrared (NIR) fluorescence imaging and effective chemophototherapy of tumor. The in vivo NIR fluorescence imaging showed that the theranostic nanodrug could be targeted to the tumor site via a potential enhanced permeability and retention effect proving the efficient accumulation of nanoparticles in the tumor site. Dramatically, chemophototherapy of tumor-bearing mice in vivo almost completely suppressed tumor growth and no tumor recurrence was observed. Encouraged by its carrier-free, prominent imaging and effective therapy, the small molecule nanodrug via self-assembly will provide a promising strategy for synergistic cancer theranostics.


Asunto(s)
Fármacos Fotosensibilizantes/química , Animales , Antineoplásicos , Verde de Indocianina , Ratones , Nanopartículas , Neoplasias , Fotoquimioterapia , Nanomedicina Teranóstica
14.
Sci Rep ; 7(1): 5813, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28725042

RESUMEN

Recent global deregulation of ginseng as the table food raises our concern about the possible ginseng-warfarin interaction that could be life-threatening to patients who take warfarin for preventing fatal strokes and thromboembolism while using ginseng products for bioenergy recovery. Here we show that quality-control ginsenosides, extracted from ginseng and containing its major active ingredients, produce dose- and time-dependent antagonism in rats against warfarin's anti-coagulation assessed by INR and rat thrombosis model. The interactions between ginsenosides and warfarin on thrombosis, pharmacokinetics, activities of coagulation factors and liver cytochrome P450 isomers are determined by using thrombosis analyzer, UPLC/MS/MS, ELISA and real-time PCR, respectively. The antagonism correlates well with the related pharmacokinetic interaction showing that the blood plateaus of warfarin reached by one-week warfarin administration are significantly reduced after three-week co-administration of warfarin with ginsenosides while 7-hydroxywarfarin is increased. The one-week warfarin and three-week warfarin-ginsenosides regimen result in restoring the suppressed levels by warfarin of the coagulating factors II, VII and protein Z, and significantly enhance activities of P450 3A4 and 2C9 that metabolize warfarin. The present study, for the first time, provides the solid evidence to demonstrate the warfarin-ginsenoside interaction, and warns the warfarin users and regulation authorities of the dangerous interaction.


Asunto(s)
Interacciones de Hierba-Droga , Internacionalidad , Panax/química , Control Social Formal , Warfarina/farmacología , Animales , Anticoagulantes/farmacología , Factores de Coagulación Sanguínea/metabolismo , Carragenina , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ginsenósidos/farmacocinética , Ginsenósidos/farmacología , Relación Normalizada Internacional , Control de Calidad , Ratas , Ratas Sprague-Dawley , Trombosis/inducido químicamente , Trombosis/patología , Factores de Tiempo , Warfarina/administración & dosificación , Warfarina/análogos & derivados , Warfarina/sangre
15.
J Ethnopharmacol ; 171: 154-60, 2015 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-26055342

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Isoboldine is one of the major bioactive constituents in the total alkaloids from Radix Linderae (TARL) which could effectively alleviate inflammation and joints destruction in mouse collagen-induced arthritis. To better understand its pharmacological activities, we need to determine its pharmacokinetic and metabolic profiles. MATERIALS AND METHODS: In this study, a sensitive and simple UPLC-MS/MS method was developed and validated for determination of isoboldine in rat plasma. Isoboldine in plasma was recovered by liquid-liquid extraction using 1 mL of methyl tert-butyl ether. Chromatographic separation was performed on a C18 column at 45°C, with a gradient elution consisting of acetonitrile and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. The detection was performed on an electrospray triple-quadrupole MS/MS by positive ion multiple-reaction monitoring mode. This newly developed method was successfully applied to a pharmacokinetic study after oral and intravenous dosing in rats. For metabolites identification, isoboldine was orally administered to rats and the metabolite in plasma, bile, urine and feces were characterized by the established UPLC-MS/MS method. RESULTS: Good linearity (r(2)>0.9956) was achieved in a concentration range of 4.8-2400 ng/mL with a lower limit of quantification of 4.8 ng/mL for isoboldine. The intra- and inter-day precisions of the assay were 1.7-5.1% and 2.2-4.4% relative standard deviation with an accuracy of 91.3-102.3%. A total of five phase II metabolites in rat plasma, bile, urine and feces were characterized by comparing retention time in UPLC, and by molecular mass and fragmentation pattern of the metabolites by mass spectrometry with those of isoboldine. CONCLUSION: isoboldine has extremely low oral bioavailability due to the strong first-pass effect by the rats, and glucuronidation and sulfonation were involved in metabolic pathways of isoboldine in rats. These results have paved the way for further clarifying therapeutic ingredients and provided new knowledge regarding pharmacokinetic features of this category of isoquinoline alkaloids.


Asunto(s)
Alcaloides/farmacocinética , Lindera , Raíces de Plantas , Alcaloides/sangre , Alcaloides/orina , Animales , Bilis/química , Cromatografía Líquida de Alta Presión , Heces/química , Masculino , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
16.
Eur J Pharm Sci ; 70: 55-63, 2015 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-25638419

RESUMEN

The anticancer efficacy of ursolic acid (UA) was limited by poor water solubility, non-specific tumor distribution, and low bioavailability. To overcome this problem, polyamidoamine (PAMAM) conjugated with UA and folic acid (FA) as novel dendrimeric prodrugs were designed and successfully synthesized by a concise one-pot synthetic approach. Both FA and UA were covalently conjugated to the surface of PAMAM through acid-labile ester bonds and the covalently linked UA could be hydrolysed either in acidic (pH 5.4) or in neutral (pH 7.4) PBS solution. The cellular uptake study indicated that the presence of FA enhanced uptake of the dendrimeric prodrugs in folate receptor (FR) over-expressing Hela cells. The enhanced cellular uptake could be due to the electrostatic absorptive endocytosis and FR-mediated endocytosis. In contrast, for HepG2 cells, a FR-negative cell line, FA conjugation on the surface of the dendrimer showed no effect on the cellular uptake. In MTT assay and cell cycle analysis, FA-modified dendrimeric prodrugs showed significantly enhanced toxicity than non-FA-modified ones in Hela cells. These results suggested that FA-modified dendrimeric UA prodrugs have the potential for targeted delivery of UA into cancer cells to improve its anti-tumor efficacy.


Asunto(s)
Antineoplásicos/metabolismo , Dendrímeros/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Receptores de Folato Anclados a GPI/metabolismo , Profármacos/metabolismo , Triterpenos/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dendrímeros/administración & dosificación , Dendrímeros/síntesis química , Evaluación Preclínica de Medicamentos/métodos , Regulación Neoplásica de la Expresión Génica , Células HeLa , Células Hep G2 , Humanos , Profármacos/administración & dosificación , Profármacos/síntesis química , Triterpenos/administración & dosificación , Triterpenos/síntesis química , Ácido Ursólico
17.
Curr Drug Metab ; 14(5): 616-23, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23701161

RESUMEN

In Traditional Chinese Medicine (TCM), ginseng roots are taken orally as a pharmacological adaptogen and nourishing stimulants for thousands of years. Along with the rapid advancement of modern life technologies, ginseng's effects as a non-toxic non-organ-specific cancer preventive agent have recently been elucidated both at molecular levels and on clinical aspects. Here we presented some techniques used for separating ginseng active ingredients, evidence of effects of ginseng and its ingredients on cancer and cancer metastasis obtained from in vitro and in vivo experiments and thousands of volunteers participated in various clinical trials. As a biological response modifier and an adaptogen to synergistically enhance efficacy of conventional therapy as a supplement, adequate ginseng consumption reduces the risk of development of all types of cancer and the recurrence of some types of cancer, improves host intrinsic response to cancer and quality of patients' life. We also briefly stated recent case reports on potential interaction between warfarin and ginseng products.


Asunto(s)
Neoplasias/tratamiento farmacológico , Panax/química , Extractos Vegetales/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Humanos , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Medicina Tradicional China/métodos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/prevención & control , Neoplasias/patología , Neoplasias/prevención & control , Fitoterapia/métodos , Extractos Vegetales/farmacología , Calidad de Vida
18.
Sci Rep ; 3: 1293, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23443065

RESUMEN

Nanotechnology has been extensively explored for drug delivery. Here, we introduce the concept of a nanodrug based on synergy of photothermally-activated physical and biological effects in nanoparticle-drug conjugates. To prove this concept, we utilized tumor necrosis factor-alpha coated gold nanospheres (Au-TNF) heated by laser pulses. To enhance photothermal efficiency in near-infrared window of tissue transparency we explored slightly ellipsoidal nanoparticles, its clustering, and laser-induced nonlinear dynamic phenomena leading to amplification and spectral sharpening of photothermal and photoacoustic resonances red-shifted relatively to linear plasmonic resonances. Using a murine carcinoma model, we demonstrated higher therapy efficacy of Au-TNF conjugates compared to laser and Au-TNF alone or laser with TNF-free gold nanospheres. The photothermal activation of low toxicity Au-TNF conjugates, which are in phase II trials in humans, with a laser approved for medical applications opens new avenues in the development of clinically relevant nanodrugs with synergistic antitumor theranostic action.


Asunto(s)
Antineoplásicos/administración & dosificación , Oro , Nanosferas , Factor de Necrosis Tumoral alfa/administración & dosificación , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Portadores de Fármacos , Oro/química , Calor , Rayos Láser , Luz , Ratones , Nanosferas/administración & dosificación , Nanosferas/química , Nanosferas/toxicidad , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fototerapia/métodos , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/uso terapéutico
20.
Zhongguo Zhong Yao Za Zhi ; 33(9): 1014-7, 1089, 2008 May.
Artículo en Chino | MEDLINE | ID: mdl-18652346

RESUMEN

OBJECTIVE: To screen a group of traditional Chinese medicines with effect on pregnane X receptor (PXR)-mediated transcription regulation of P450 3A4 (CYP3A4); and to study whether they can induce the expression of CYP3A4 with a dose, time-dependent manner. METHOD: Transient cotransfection reporter gene assays were performed with pCI-hPXR-neo, pGL3-CYP3A4-Luc and beta-galactosidase expression plasmid in HepG2 cells. RESULT: Rhizoma Curcumae, Atractylodes lancea, A. macrocaphala and Poria cocos could induce transcriptional expression of CYP3A4. In the dose-effect study, 24 h after induction, 500 mg x L(-1) Rhizoma Curcumae, A. lancea, A. macrocaphala and Poria cocos, respectively, could induce the CYP3A4 gene expression with (6.82 +/- 0.09), (6.76 +/- 0.20), (5.49 +/- 0.13) and (4.97 +/- 0.07) folds, as compared with 0.1% DMSO treated cells. In the time-effect study, 500 mg x L(-1) Rhizoma curcumae, A. lancea, A. macrocaphala and Poria cocos for 48 h could induce the CYP3A4 gene expression with (7.74 +/- 0.54), (7.34 +/- 0.10), (5.54 +/- 0.11) and (5.32 +/- 0.18) folds, compared with 0.1% DMSO treated cells. CONCLUSION: Rhizoma Curcumae, A. lancea, A. macrocaphala and Poria cocos could induce the expression of CYP3A4 gene transcription through activating PXR.


Asunto(s)
Citocromo P-450 CYP3A/genética , Medicamentos Herbarios Chinos/farmacología , Transcripción Genética/efectos de los fármacos , Línea Celular Tumoral , Humanos , Receptor X de Pregnano , Receptores de Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA