Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 862: 160845, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526193

RESUMEN

Coking industry has been considered as important source of volatile organic compounds (VOCs) emissions. However, few studies have emphasized the occurrence and adverse effects of VOCs from coking wastewater treatment processes. In this research, pollution profiles of both air and water phase VOCs in a typical coking wastewater treatment plant were investigated in terms of distribution characteristics, air-water exchange, ozone formation potential (OFP) and associated human health risks. Thirty VOCs were detected in the air phase, in which benzene and naphthalene were found to be the major VOCs with total contribution of 87.81 %. Nineteen VOCs were detected in the water phase, in which benzene, naphthalene and toluene contribute most to total VOCs with total contribution of 75.1 %. The regulating tank (RT) was the major source of VOCs, and the emission rate of total VOCs from all unites was 2711.03 g/d with annual emission of 0.99 t. The emission factor was estimated to be 1.36 g VOCs/m3 wastewater. The air-water exchange was assessed using the Fugacity model, and water-to-air volatilization was predominant based on the net flux of air-water exchange. OFP evaluated by emission factor indicated that the total OFP in RT was the highest (1.52 g O3/m3 wastewater), and toluene contributed 41.8 % of the total OFP, followed by naphthalene accounting for 38.7 % The total carcinogenic risks were in the range of 8.60 × 10-6 to 2.18 × 10-3, in which the RT exceeded the significant risk threshold (>1 × 10-4). The non-carcinogenic risks of hazard quotient value in RT also exceeded the risk threshold (>1), and naphthalene was the major contributor accounting for 79.02 %. These results not only provided comprehensive knowledge on pollution profiles and environmental risks of VOCs during coking wastewater treatment processes, but also facilitated the implement of VOCs regulation and occupational health protection strategies in coking industries.


Asunto(s)
Contaminantes Atmosféricos , Coque , Ozono , Compuestos Orgánicos Volátiles , Purificación del Agua , Humanos , Aguas Residuales , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Ozono/análisis , Benceno , Monitoreo del Ambiente/métodos , Medición de Riesgo , Naftalenos , Carcinógenos , Tolueno , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA