Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299400

RESUMEN

The goal of this study was to assess the pharmacological effects of black tea (Camellia sinensis var. assamica) water extract on human kinin-forming enzymes in vitro. Tea is a highly consumed beverage in the world. Factor XII (FXII, Hageman factor)-independent- and -dependent activation of prekallikrein to kallikrein leads to the liberation of bradykinin (BK) from high-molecular-weight kininogen (HK). The excessive BK production causes vascular endothelial and nonvascular smooth muscle cell permeability, leading to angioedema. The prevalence of angiotensin-converting enzyme inhibitor (ACEI)-induced angioedema appears to be through BK. Both histamine and BK are potent inflammatory mediators. However, the treatments for histamine-mediated angioedema are unsuitable for BK-mediated angioedema. We hypothesized that long-term consumption of tea would reduce bradykinin-dependent processes within the systemic and pulmonary vasculature, independent of the anti-inflammatory actions of polyphenols. A purified fraction of the black tea water extract inhibited both kallikrein and activated FXII. The black tea water extracts inhibited factor XII-induced cell migration and inhibited the production of kallikrein on the endothelial cell line. We compared the inhibitory effects of the black tea water extract and twenty-three well-known anti-inflammatory medicinal herbs, in inhibiting both kallikrein and FXII. Surprisingly, arjunglucoside II specifically inhibited the activated factor XII (FXIIa), but not the kallikrein and the activated factor XI. Taken together, the black tea water extract exerts its anti-inflammatory effects, in part, by inhibiting kallikrein and activated FXII, which are part of the plasma kallikrein-kinin system (KKS), and by decreasing BK production. The inhibition of kallikrein and activated FXII represents a unique polyphenol-independent anti-inflammatory mechanism of action for the black tea.


Asunto(s)
Bradiquinina/metabolismo , Camellia/química , Endotelio Vascular/efectos de los fármacos , Factor XII/antagonistas & inhibidores , Sistema Calicreína-Quinina/efectos de los fármacos , Extractos Vegetales/farmacología , Arteria Pulmonar/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Humanos , Arteria Pulmonar/metabolismo
2.
Molecules ; 24(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699965

RESUMEN

Although 4-O-Methylhonokiol (MH) effects on neuronal and immune cells have been established, it is still unclear whether MH can cause a change in the structure and function of the cardiovascular system. The overarching goal of this study was to evaluate the effects of MH, isolated from Magnolia grandiflora, on the development of the heart and vasculature in a Japanese medaka model in vivo to predict human health risks. We analyzed the toxicity of MH in different life-stages of medaka embryos. MH uptake into medaka embryos was quantified. The LC50 of two different exposure windows (stages 9⁻36 (0⁻6 days post fertilization (dpf)) and 25⁻36 (2⁻6 dpf)) were 5.3 ± 0.1 µM and 9.9 ± 0.2 µM. Survival, deformities, days to hatch, and larval locomotor response were quantified. Wnt 1 was overexpressed in MH-treated embryos indicating deregulation of the Wnt signaling pathway, which was associated with spinal and cardiac ventricle deformities. Overexpression of major proinflammatory mediators and biomarkers of the heart were detected. Our results indicated that the differential sensitivity of MH in the embryos was developmental stage-specific. Furthermore, this study demonstrated that certain molecules can serve as promising markers at the transcriptional and phenotypical levels, responding to absorption of MH in the developing embryo.


Asunto(s)
Compuestos de Bifenilo/farmacología , Lignanos/farmacología , Animales , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/embriología , Modelos Animales de Enfermedad , Embrión no Mamífero/efectos de los fármacos , Medicina de Hierbas , Inflamación/tratamiento farmacológico , Magnolia/química , Masculino , Oryzias , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos
3.
Arch Biochem Biophys ; 591: 98-110, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26682631

RESUMEN

Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to find out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were treated in the absence/presence of various concentrations of DS and subjected to gene analysis by RT-qPCR, immunoblotting, and immunocytochemistry. We determined the ability of MDA-MB-231 cells to migrate into wound area and examined the effects of DS on cellular invasion using invasion assay. DS reduced cell viability of both cell lines in a concentration and time-dependent manner. GATA3 expression was enhanced by DS (5.76 µM) in MDA-MB-231 cells. DS (5.76 µM)-treated MDA-MB-231 cells exhibited the morphological characteristic of epithelial-like cells; mRNA expression of DNMT3A, TET2, TET3, ZFPM2 and E-cad were increased while TET1, VIM and MMP9 were decreased. Cellular invasion of MDA-MB-231 was reduced by 65 ± 5% in the presence of 5.76 µM DS. Our data suggested that DS-mediated pathway could promote GATA3 expression at transcription and translation levels. We propose that DS has potential to be used as an anti-invasive agent in breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Dioscorea/química , Diosgenina/análogos & derivados , Extractos Vegetales/administración & dosificación , Raíces de Plantas/química , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diosgenina/administración & dosificación , Relación Dosis-Respuesta a Droga , Humanos , Células MCF-7 , Invasividad Neoplásica , Fitosteroles/administración & dosificación , Saponinas/administración & dosificación , Resultado del Tratamiento
4.
J Clin Invest ; 119(8): 2291-303, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19620781

RESUMEN

The anorexigenic neuromodulator alpha-melanocyte-stimulating hormone (alpha-MSH; referred to here as alpha-MSH1-13) undergoes extensive posttranslational processing, and its in vivo activity is short lived due to rapid inactivation. The enzymatic control of alpha-MSH1-13 maturation and inactivation is incompletely understood. Here we have provided insight into alpha-MSH1-13 inactivation through the generation and analysis of a subcongenic mouse strain with reduced body fat compared with controls. Using positional cloning, we identified a maximum of 6 coding genes, including that encoding prolylcarboxypeptidase (PRCP), in the donor region. Real-time PCR revealed a marked genotype effect on Prcp mRNA expression in brain tissue. Biochemical studies using recombinant PRCP demonstrated that PRCP removes the C-terminal amino acid of alpha-MSH1-13, producing alpha-MSH1-12, which is not neuroactive. We found that Prcp was expressed in the hypothalamus in neuronal populations that send efferents to areas where alpha-MSH1-13 is released from axon terminals. The inhibition of PRCP activity by small molecule protease inhibitors administered peripherally or centrally decreased food intake in both wild-type and obese mice. Furthermore, Prcp-null mice had elevated levels of alpha-MSH1-13 in the hypothalamus and were leaner and shorter than the wild-type controls on a regular chow diet; they were also resistant to high-fat diet-induced obesity. Our results suggest that PRCP is an important component of melanocortin signaling and weight maintenance via control of active alpha-MSH1-13 levels.


Asunto(s)
Carboxipeptidasas/fisiología , Ingestión de Alimentos , alfa-MSH/antagonistas & inhibidores , Animales , Carboxipeptidasas/antagonistas & inhibidores , Carboxipeptidasas/genética , Ingestión de Alimentos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Hipotálamo/metabolismo , Masculino , Hormonas Estimuladoras de los Melanocitos/metabolismo , Hormonas Estimuladoras de los Melanocitos/farmacología , Ratones , Ratones Endogámicos BALB C , Obesidad/etiología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Reacción en Cadena de la Polimerasa , Pirimidinas/farmacología , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptores de Melanocortina/fisiología , alfa-MSH/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA