Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 11(7): 1233-46, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26514684

RESUMEN

PURPOSE: Cone-beam breast computed tomography (CBBCT), a promising breast cancer diagnostic technique, has been under investigation for the past decade. However, owing to scattered radiation and beam hardening, CT numbers are not uniform on CBBCT images. This is known as cupping artifact, and it presents an obstacle for threshold-based volume segmentation. In this study, we proposed a general post-reconstruction method for cupping artifact correction. METHODS: There were four steps in the proposed method. First, three types of local region histogram peaks were calculated: adipose peaks with low CT numbers, glandular peaks with high CT numbers, and unidentified peaks. Second, a linear discriminant analysis classifier, which was trained by identified adipose and glandular peaks, was employed to identify the unidentified peaks as adipose or glandular peaks. Third, adipose background signal profile was fitted according to the adipose peaks using the least squares method. Finally, the adipose background signal profile was subtracted from original image to obtain cupping corrected image RESULTS: In experimental study, standard deviation of adipose tissue CT numbers was obviously reduced and the CT numbers were more uniform after cupping correction by proposed method; in simulation study, root-mean-square errors were significantly reduced for both symmetric and asymmetric cupping artifacts, indicating that the proposed method was effective to both artifacts. CONCLUSIONS: A general method without a circularly symmetric assumption was proposed to correct cupping artifacts in CBBCT images for breast. It may be properly applied to images of real patient breasts with natural pendent geometry.


Asunto(s)
Artefactos , Neoplasias de la Mama/diagnóstico por imagen , Mama/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Mamografía/métodos , Algoritmos , Femenino , Humanos , Fantasmas de Imagen
2.
Phys Med Biol ; 54(22): 6959-78, 2009 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19887717

RESUMEN

It is well recognized in projection radiography that low-contrast detectability suffers in heavily attenuating regions due to excessively low x-ray fluence to the image receptor and higher noise levels. Exposure equalization can improve image quality by increasing the x-ray exposure to heavily attenuating regions, resulting in a more uniform distribution of exposure to the detector. Image quality is also expected to be improved by using the slot-scan geometry to reject scattered radiation effectively without degrading primary x-rays. This paper describes the design of a prototype scan equalization digital radiography (SEDR) system implemented with an amorphous silicon (a-Si) thin-film transistor (TFT) array-based flat-panel detector. With this system, slot-scan geometry with alternate line erasure and readout (ALER) technique was used to achieve scatter rejection. A seven-segment beam height modulator assembly was mounted onto the fore collimator to regulate exposure regionally for chest radiography. The beam modulator assembly, consisting of micro linear motors, lead screw cartridge with lead (Pb) beam blockers attached, position feedback sensors and motor driver circuitry, has been tested and found to have an acceptable response for exposure equalization in chest radiography. An anthropomorphic chest phantom was imaged in the posterior-anterior (PA) view under clinical conditions. Scatter component, primary x-rays, scatter-to-primary ratios (SPRs) and primary signal-to-noise ratios (PSNRs) were measured in the SEDR images to evaluate the rejection and redistribution of scattered radiation, and compared with those for conventional full-field imaging with and without anti-scatter grid methods. SPR reduction ratios (SPRRRs, defined as the differences between the non-grid full-field SPRs and the reduced SPRs divided by the former) yielded approximately 59% for the full-field imaging with grid and 82% for the SEDR technique in the lungs, and 77% for the full-field imaging with grid and 95% for the SEDR technique in the subdiaphragm. The SEDR technique demonstrated a substantial improvement in PSNRs over the anti-scatter grid technique. The improvements of PSNRs varied with the regions and are more pronounced in heavily attenuating regions.


Asunto(s)
Intensificación de Imagen Radiográfica/instrumentación , Pantallas Intensificadoras de Rayos X , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Selenio , Sensibilidad y Especificidad
3.
Proc SPIE Int Soc Opt Eng ; 6142: 6142341-6142347, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-18509508

RESUMEN

We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images.Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA