Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014359

RESUMEN

Eucalyptus globulus is a plant widely used by the world population, including Morocco, in the treatment of several pathologies. The aim of this work is to evaluate the antioxidant, anti-inflammatory, dermatoprotective, and antimicrobial effects of essential oil and honey from E. globulus, as well as their combination. Chemical composition was determined by GC-MS analysis. The antioxidant activity was evaluated by three tests, namely, DPPH, reducing power, and the ß-carotene/linoleic acid assay. The anti-inflammatory activity was investigated in vitro (5-lipoxygenase inhibition) and in vivo (carrageenan-induced paw edema model), while the dermatoprotective activity was tested in vitro (tyrosinase inhibition). Moreover, the antibacterial activity was assessed using agar well diffusion and microdilution methods. The results showed that eucalyptol presents the main compound of the essential oil of E. globulus (90.14%). The mixture of essential oil with honey showed the best antioxidant effects for all the tests used (0.07 < IC50 < 0.19 mg/mL), while the essential oil was the most active against tyrosinase (IC50 = 38.21 ± 0.13 µg/mL) and 5-lipoxygenase (IC50 = 0.88 ± 0.01 µg/mL), which corroborated the in vivo test. Additionally, the essential oil showed the best bactericidal effects against all strains tested, with inhibition diameter values ranging from 12.8 to 21.6 mm. The findings of this work showed that the combination of the essential oil with honey showed important results in terms of biological activity, but the determination of the underlying mechanisms of action remains a major prospect to be determined.


Asunto(s)
Antiinfecciosos , Eucalyptus , Miel , Aceites Volátiles , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Araquidonato 5-Lipooxigenasa , Eucalyptus/química , Pruebas de Sensibilidad Microbiana , Monofenol Monooxigenasa , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química
2.
Molecules ; 27(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35566130

RESUMEN

Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.


Asunto(s)
Neoplasias , Nigella sativa , Benzoquinonas/farmacología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Epigénesis Genética , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Nigella sativa/metabolismo , Aceites de Plantas/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA