Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microorganisms ; 11(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512797

RESUMEN

Chromium propionate (Cr-Pro) and calcium propionate (Ca-Pro) are widely applied in dairy production, especially in the alleviation of heat stress (HS). HS can reduce the abundance of rumen microbiota and the lactation performance of dairy cows. The present work mainly focused on evaluating the effects of Cr-Pro and Ca-Pro on the performance, ruminal bacterial community, and stress of postpartum HS dairy cows as well as identifying the differences in their mechanisms. Fifteen multiparous postpartum Holstein cows with equivalent weights (694 ± 28 kg) and milk yields (41.2 ± 1.21 kg/day) were randomly divided into three groups: control (CON), Cr-Pro (CRPR), and Ca-Pro (CAPR). The control cows received the basal total mixed ration (TMR) diet, while the CRPR group received TMR with 3.13 g/day of Cr-Pro, and the CAPR group received TMR with 200 g/day of Ca-Pro. The rumen microbial 16S rRNA was sequenced using the Illumina NovaSeq platform along with the measurement of ruminal volatile fatty acids (VFAs) and milking performance. Cr-Pro and Ca-Pro improved lactation performance, increased the rumen VFA concentration, and altered the rumen microbiota of the HS dairy cows. Cr-Pro significantly improved the milk yield (p < 0.01). The richness and diversity of the microbial species significantly increased after feeding on Ca-Pro (p < 0.05). Gene function prediction revealed increased metabolic pathways and biological-synthesis-related function in the groups supplemented with Cr-Pro and Ca-Pro. Our results indicate that the application of Cr-Pro or Ca-Pro can provide relief for heat stress in dairy cows through different mechanisms, and a combination of both is recommended for optimal results in production.

2.
Phytomedicine ; 109: 154561, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610156

RESUMEN

BACKGROUND: NAFLD is a liver disease that is caused by liver damage or extreme lipid deposition but not alcohol. Nrf2 could mediate resistance to oxidative stress injury. Autophagy can degrade metabolic waste and accumulated toxic endogenous substances. Pterostilbene (PTE) is an active compound extracted from blueberry, and grape, that exhibits many biological effects, such as antiinflammation and antitumor. PURPOSE: This study provides a mechanism of PTE affecting on oxidative stress and autophagy in NAFLD mice. Tyloxapol, oil acid (OA) and palmitic acid (PA) were used to induce lipid accumulation in mice and HepG2 cells. METHODS: Western blotting, CRISPR/Cas 9 and other molecular biological approaches were applied to explore the mechanisms of PTE effected on NAFLD. RESULTS: PTE pretreatment effectively reduced the lipid accumulation in OA and PA induced HepG2 cells and tyloxapol induced mice, and significantly promoted the expression of nNrf2, PPAR-α and HO-1, and AMPK activity, but inhibited the expression of mTORC 1 and SREBP-1c. PTE activated phosphatidylinositide 3-kinase (PI3K) and proteins in the autophagy-related gene (ATG) family, and promoted the transformation of LC3Ⅰ to LC3Ⅱ which indicated the activation of autophagy, however, these effects were abolished after Nrf2 knockout. CONCLUSION: PTE effectively alleviated oxidative stress damage induced by excessive lipid accumulation in hepatocytes, thus promoting the metabolism and decomposition of fatty acids to improve NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Estrés Oxidativo , Autofagia , Ácidos Grasos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL
3.
Int Immunopharmacol ; 45: 148-155, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28213269

RESUMEN

Morin, a bioactive flavonoid extracted from the bark of Moraceae plants and many medicinal herbs, has anti-inflammatory and antioxidative effects. In this research, we explored the protective effects of morin against lipopolysaccharide (LPS) and d-galactosamine (D-GalN) induced acute liver injury in mice. Mice were given an intraperitoneal injection of morin before LPS and D-GalN treatment and the HepG2 cells were only given morin to investigate its effects. The results showed that morin markedly inhibited the production of serum alanine transaminase (ALT), aspartate aminotransferase (AST), interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and hepatic TNF-α, IL-6, and myeloperoxidase (MPO) induced by LPS/D-GalN. In order to evaluate morin effect in the future, we investigated the expression of nuclear factor E2 related factor 2 (Nrf2), nuclear factor-kappaB (NF-κB), toll like receptor 4 (TLR4) on liver injury. Taken together, these results suggested that morin could exert the anti-inflammatory and anti-oxidative effects against LPS/D-GalN-induced acute liver injury by activating Nrf2 signal pathways and inhibiting NF-κB activation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Flavonoides/uso terapéutico , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Galactosamina/inmunología , Hemo-Oxigenasa 1/metabolismo , Células Hep G2 , Humanos , Lipopolisacáridos/inmunología , Hígado/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Moraceae/inmunología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA