Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phytomedicine ; 128: 155512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460357

RESUMEN

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Apoptosis , Artritis Experimental , Artritis Reumatoide , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Naftoquinonas , Transducción de Señal , Sinoviocitos , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Naftoquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Artritis Experimental/tratamiento farmacológico , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Masculino , Proliferación Celular/efectos de los fármacos , Humanos , Ratas Sprague-Dawley
2.
Fitoterapia ; 173: 105788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38141880

RESUMEN

As our ongoing searching for the bioactive natural terpenoids, nine ent-kauranoids (1-9), including three previously undescribed ones (1, 2, and 9), were isolated from the aerial parts of Isodon amethystoides. Their structures were elucidated on the basis of spectroscopic data analysis, including NMR, MS, and ECD. Compounds 1 and 2 were a pair of tautomeric compounds, which was confirmed by the HPLC analysis and low temperature NMR testing. The underlying mechanism of the tautomer was proposed as an intramolecular SN2 reaction, which was explained by quantum chemical calculation. The HOMO-LUMO gap and the free energy revealed the spontaneous of the tautomeric of the 1 and 2. Additionally, the similar phenomena were also found in the two groups of known compounds 3 and 4 and 6 and 7, respectively. Apart from the tautomer, compounds 3 and 4 can be hydrolyzed into 5 through ester hydrolysis in CDCl3, while compounds 6, 7 can be hydrolyzed into 8 through ester hydrolysis. These phenomena were also confirmed through HPLC analysis and low temperature nuclear magnetic resonance tests and the mechanism was studied using quantum chemical calculation.


Asunto(s)
Antineoplásicos Fitogénicos , Diterpenos de Tipo Kaurano , Isodon , Estructura Molecular , Isodon/química , Componentes Aéreos de las Plantas/química , Ésteres , Ensayos de Selección de Medicamentos Antitumorales
3.
Chin J Nat Med ; 21(9): 670-681, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37777317

RESUMEN

Alcoholic liver disease (ALD) is a growing global health concern, and its early pathogenesis includes steatosis and steatohepatitis. Inhibiting lipid accumulation and inflammation is a crucial step in relieving ALD. Evidence shows that puerarin (Pue), an isoflavone isolated from Pueraria lobata, exerts cardio-protective, neuroprotective, anti-inflammatory, antioxidant activities. However, the therapeutic potential of Pue on ALD remains unknown. In the study, both the NIAAA model and ethanol (EtOH)-induced AML-12 cell were used to explore the protective effect of Pue on alcoholic liver injury in vivo and in vitro and related mechanism. The results showed that Pue (100 mg·kg-1) attenuated EtOH-induced liver injury and inhibited the levels of SREBP-1c, TNF-α, IL-6 and IL-1ß, compared with silymarin (Sil, 100 mg·kg-1). In vitro results were consistent within vivo results. Mechanistically, Pue might suppress liver lipid accumulation and inflammation by regulating MMP8. In conclusion, Pue might be a promising clinical candidate for ALD treatment.

4.
Phytother Res ; 37(12): 5622-5638, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37690983

RESUMEN

BACKGROUND AND AIM: Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS: We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS: In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS: The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.


Asunto(s)
Productos Biológicos , Hipertensión , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Hipertensión/tratamiento farmacológico , Inflamación/tratamiento farmacológico
5.
Planta Med ; 89(3): 273-285, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35714651

RESUMEN

Alcoholic liver disease is one of the leading causes of liver-related morbidity and mortality worldwide, but effective treatments are still lacking. Honokiol, a lignin-type natural compound isolated from the leaves and bark of Magnolia plants, has been widely studied for its beneficial effects on several chronic diseases. Accumulating studies have revealed that honokiol displays a potential therapeutic effect on alcoholic liver disease. In this study, the protective activity of honokiol on alcoholic liver disease was confirmed due to its significant inhibitory activity on the expression levels of inflammatory cytokines (such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1ß) in EtOH-fed mice and in EtOH-induced AML-12 cells. Meanwhile, the expression of the lipid metabolic parameter sterol regulatory element-binding protein-1c was also reduced. However, peroxisome proliferator-activated receptor α was increased in animal and cell experiments, which indicates that the activity of honokiol was related to its regulated activity on lipid metabolism. The result showed that honokiol significantly inhibited the expression level of p38α in vivo and in vitro. Blocking p38α inhibited the expression levels of tumor necrosis factor-alpha, interleukin-6, interleukin-1ß, and sterol regulatory element-binding protein-1c but promoted the expression level of peroxisome proliferator-activated receptor α compared with the honokiol-treated group. Moreover, the forced expression level of p38α further produced the opposite effect on inflammatory cytokines and lipid metabolism indicators. Furthermore, p38α has been related to the activation of the nuclear factor kappa B signaling pathway. In our study, honokiol significantly inhibited the activation of the nuclear factor kappa B signaling pathway mediated by p38α. In conclusion, the results suggest that honokiol might be an effective regulator of p38α by downregulating the nuclear factor kappa B signaling pathway, thereby reducing the inflammatory response and lipid metabolism disorder in alcoholic liver disease.


Asunto(s)
Lignanos , Trastornos del Metabolismo de los Lípidos , Hepatopatías Alcohólicas , Ratones , Animales , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Metabolismo de los Lípidos , Interleucina-6/metabolismo , FN-kappa B/metabolismo , PPAR alfa/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Hígado , Lignanos/farmacología , Lignanos/uso terapéutico , Citocinas/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Esteroles/metabolismo , Esteroles/farmacología
6.
Pharm Biol ; 60(1): 1739-1750, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36089851

RESUMEN

CONTEXT: The traditional Chinese medicine formula Tao-Hong-Si-Wu decoction (TSD), used for treating ischaemic stroke, has the potential to treat depressive disorder (DD). OBJECTIVE: To explore the effective targets of TSD on DD animal models. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were modelled by inducing chronic unpredictable mild stress (CUMS) during 35 days and treated with three dosages of TSD (2.5, 5 and 10 g/kg) or fluoxetine (10 mg/kg) by oral gavage for 14 days. Bodyweight measurements and behavioural tests were performed to observe the effect of TSD on the CUMS animals. A gas chromatography coupled with mass spectrometry (GC-MS)-based metabolomic analysis was conducted to reveal the metabolic characteristics related to the curative effect of TSD. Levels of the proteins associated with the feature metabolites were analysed. RESULTS: Reduced immobile duration and crossed squares in the behavioural tests were raised by 48.6% and 32.9%, on average, respectively, by TSD treatment (ED50=3.2 g/kg). Antidepressant effects of TSD were associated with 13 decreased metabolites and the restorations of ornithine and urea in the serum. TSD (5 g/kg) raised serum serotonin by 54.1 mg/dL but suppressed arginase I (Arg I) by 47.8 mg/dL in the CUMS rats. Proteins on the brain-derived neurotrophic factor (BDNF)-cAMP response element-binding protein (CREB) axis that modulate the inhibition of Arg I were suppressed in the CUMS rats but reversed by the TSD intervention. DISCUSSION AND CONCLUSIONS: TSD improves depression-like symptoms in CUMS rats. Further study will focus on the antidepressant-like effects of effective compounds contained in TSD.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Antidepresivos/farmacología , Arginasa/metabolismo , Arginasa/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Medicamentos Herbarios Chinos , Hipocampo , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-35469161

RESUMEN

The aim of this study was to investigate the effects of arbutin (AR) on lipopolysaccharide (LPS)-induced sepsis pneumonia. LPS-induced mice and A549 cells were used to establish septic pneumonia model. AR significantly decreased lung wet-to-dry weight (W/D) ratio, lung myeloperoxidase (MPO) activity and ameliorated lung histopathological changes. In addition, AR increased super oxide dismutase (SOD) activity, decreased malondialdehyde (MDA) content and levels of cytokines including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-ß) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in mice. Furthermore, the results demonstrated that AR inhibited the JAK2/STAT3/NF-κB pathway in LPS-induced A549 cells which was further confirmed by siRNA JAK2 experiment. The experimental results indicated that the protective mechanism of AR on sepsis pneumonia might be attributed partly to the inhibition of cytokine production and JAK2/STAT3/NF-κB pathway.

8.
Fitoterapia ; 159: 105191, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35367538

RESUMEN

Chloranthus fortunei (family Chloranthaceae), a perennial herb, widely distributed in south China with an altitude of 170-340 m. The whole plants were used as an anti-inflammatory agent for the treatment of cough, arthritis and tumor. Five previously unreported compounds fortulactones A-E were isolated from the aerial part of Chloranthus fortunei. Their structures were elucidated using 1D/2D NMR and HRESIMS and their absolute configuration were determined using the ECD excitron chirality method. All isolates were tested for inhibitory effects on the NO production of liposaccharide (LPS)-induced RAW 264.7 macropahges. The most potent compound 1 was further evaluated its protective activity against LPS stimulated A549 cells, the ELISA kits results showed the abnormal states of MDA and SOD were corrected to a certain extent. Meanwhile, the pro-inflammatory cytokine, such as TNF-α, IL-6 and IL-1ß were also attenuated. In conclusion, these results showed that 1 exhibited therapeutic potential for ameliorating ALI.


Asunto(s)
Lesión Pulmonar Aguda , Sesquiterpenos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Humanos , Lipopolisacáridos/farmacología , Pulmón , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacología
9.
Front Pharmacol ; 12: 650425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122073

RESUMEN

Inflammasomes are large multimolecular complexes best recognized because of their ability to control activation of caspase-1, which in turn regulates the maturation of interleukin-18 (IL-18) and interleukin-1 ß (IL-1ß). IL-1ß was originally identified as a pro-inflammatory cytokine, capable of inducing local and systemic inflammation as well as a fever response reaction in response to infection or injury. Excessive production of IL-1ß is related to inflammatory and autoimmune diseases. Both coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS) are characterized by excessive inflammatory response. For SARS, there is no correlation between viral load and worsening symptoms. However, there is no specific medicine which is available to treat the disease. As an important part of medical practice, TCM showed an obvious therapeutic effect in SARS-CoV-infected patients. In this article, we summarize the current applications of TCM in the treatment of COVID-19 patients. Herein, we also offer an insight into the underlying mechanisms of the therapeutic effects of TCM, as well as introduce new naturally occurring compounds with anti-coronavirus activity, in order to provide a new and potential drug development strategy for the treatment of COVID-19.

10.
Pharmacol Res ; 150: 104501, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31689520

RESUMEN

Alcoholic liver disease (ALD) is a major cause of chronic liver disease worldwide that afflicts human health. With the in-depth study of the disease, its pathogenesis has gradually become clear. Although great breakthroughs have been made in the research of ALD, the research and development of drugs related to ALD has lagged behind seriously. However, natural products have always inspired the development of drugs. Meanwhile, there is evidence that some natural products can also play a certain role in the treatment of ALD. Thus, we reviewed the natural products, extracts and formulations with potential anti-ALD activities by consulting the relevant data in the databases of PubMed, Web of Science and CNKI databases, in order to elucidate the regulated mechanism of these natural products. Sum up, the insights provided in present review will be needed for further exploration of botanical drugs in the development of ALD therapy.


Asunto(s)
Productos Biológicos/uso terapéutico , Hepatopatías Alcohólicas/tratamiento farmacológico , Animales , Humanos , Hepatopatías Alcohólicas/metabolismo , Medicina Tradicional China , Aceites Volátiles/uso terapéutico , Fitoterapia , Transducción de Señal
11.
Phytochemistry ; 137: 117-122, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28215608

RESUMEN

Eight lindenane dimers, chololactones A-H, along with two known compounds, were isolated from the roots of Chloranthus holostegius. Their structures were elucidated using 1D/2D NMR and HRESIMS, and their absolute configurations were determined using the ECD exciton chirality method. All isolates were tested for inhibitory effects on the NO production of the liposaccharide (LPS)-induced RAW 264.7 macrophages, and showed moderate activity with IC50 values at 3.5-35.4 µM.


Asunto(s)
Antiinflamatorios/química , Magnoliopsida/química , Raíces de Plantas/química , Sesquiterpenos/química , Animales , Antiinflamatorios/aislamiento & purificación , China , Ratones , Estructura Molecular , Plantas Medicinales/química , Células RAW 264.7 , Sesquiterpenos/aislamiento & purificación
12.
Fitoterapia ; 106: 153-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26365830

RESUMEN

Two pairs of enantiomers of flavonoid oligomers (1a and 1b, 2a and 2b) along with one known chalcone (3) were isolated from the rhizomes of Alpinia platychilus. Their structures were elucidated on the basis of spectroscopic data (MS and 1D/2D NMR). The absolute configurations of the flavonoid oligomers were established by their ECD spectra. Separation of the enantiomeric mixtures (1a and 1b, 2a and 2b) was achieved on a chiral column using hexane:isopropyl alcohol:ethanol (7:2:1) as eluents. The anticoagulant assay showed that 2a, 2b and 3 exhibited potent activities to prolong the prothrombin times (PT) and the thrombin times (TT).


Asunto(s)
Alpinia/química , Anticoagulantes/química , Flavonoides/química , Animales , Anticoagulantes/aislamiento & purificación , Flavonoides/aislamiento & purificación , Masculino , Estructura Molecular , Extractos Vegetales/química , Tiempo de Protrombina , Conejos , Rizoma/química , Tiempo de Trombina
13.
J Nat Prod ; 78(6): 1322-9, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26052978

RESUMEN

Eight new cafestol-type diterpenoids, tricalysins A-H (1-8), along with five known analogues (9-13), were isolated from the twigs of Tricalysia fruticosa. The structures of 1-8 were elucidated by the application of spectroscopic methods. Inhibitory effects of the isolates on nitric oxide (NO) production in lipopolysaccaride-activated RAW 264.7 macrophages were evaluated, and compound 8 exhibited the most potent bioactivity, with an IC50 value of 6.6 ± 0.4 µM. It was shown further that compound 8 inhibits inflammatory responses via suppression of the expression of iNOS and reduction of the production of the pro-inflammatory cytokines IL-6 and TNF-α, resulting from activation of nuclear factor-kappaB (NF-κB) and phosphorylation of MAPKs (ERK, JNK, and p38).


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Rubiaceae/química , Antiinflamatorios/química , Citocinas/metabolismo , Diterpenos/química , Medicamentos Herbarios Chinos/química , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Estructura Molecular , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Tallos de la Planta/química , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA