Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurol Res ; 40(6): 499-507, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29576013

RESUMEN

Objectives Intracranial atherosclerotic stenosis (ICAS) is one of the most common causes of stroke worldwide. We adapted a rat model of atherosclerosis to study brain intracranial atherosclerosis, and further investigated how omega-3 fatty acids (O3FA) attenuated the development of ICAS by reducing the generation of reactive oxygen species (ROS) and the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity. Methods Adult male Sprague-Dawley rats were divided into control normal-cholesterol or high-cholesterol diet groups with or without O3FA for up to 6 weeks. NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL), a nitric oxide synthase inhibitor, was added to the drinking water of the high-cholesterol groups during the first 2 weeks. The rats received supplementation with O3FA (5 mg/kg/day) by gavage. At 3 and 6 weeks, we measured blood lipid levels, including low-density lipoprotein (LDL), cholesterol (CHO), triglycerides (TG), and high-density lipoprotein (HDL) as atherosclerotic blood markers. The lumen of middle cerebral artery (MCA) and the thickness of the vessel wall were assessed histologically. ROS production was measured. NOX activity and mRNA and protein expression of NOX subunits (p47phox, gp91phox, p22phox, and p67phox) were measured. Results A high-cholesterol diet exhibited a significant increase in the classic blood markers (LDL, CHO, and TG) for atherosclerosis, as well as a decrease in HDL. These markers were found to be progressively more severe with time. Additionally, increased lumen stenosis and intimal thickening were observed in the MCA for this group. Rats given O3FA demonstrated attenuation of blood lipid levels with an absence of morphological changes.O3FA significantly reduced ROS production and NOX activity in the brain. Moreover, O3FA decreased the mRNA and protein expression of the NOX subunits p47phox, gp91phox, and p67phox. Conclusions Long-term O3FA dietary supplementation prevents the development of intracranial atherosclerosis. This O3FA effect appears to be mediated by its attenuation of NOX subunit expression and NOX activity, therefore reducing ROS production. O3FA dietary supplement shows promising results in the prevention of ICAS.


Asunto(s)
Encéfalo/enzimología , Ácidos Grasos Omega-3/uso terapéutico , Arteriosclerosis Intracraneal/dietoterapia , Arteriosclerosis Intracraneal/enzimología , NADPH Oxidasas/metabolismo , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Constricción Patológica/dietoterapia , Constricción Patológica/enzimología , Constricción Patológica/patología , Modelos Animales de Enfermedad , Arteriosclerosis Intracraneal/patología , Lípidos/sangre , Masculino , Microvasos/enzimología , Microvasos/patología , Arteria Cerebral Media/enzimología , Arteria Cerebral Media/patología , Tamaño de los Órganos , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
2.
Oncotarget ; 9(3): 3765-3778, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29423081

RESUMEN

BACKGROUND: Intracranial atherosclerosis (ICA) a major health problem. This study investigated whether inhalation of fine airborne particulate matters (PM2.5) causes ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA. RESULTS: Twelve but not 6 week exposure significantly increased triglycerides (TG) in normal chow diet (NCD), while PM2.5 enhanced all lipid profiles (TG, low density lipoprotein (LDL) and cholesterol (CHO)) after both 6 and 12-week exposure with high-cholesterol diet (HCD). PM2.5 exposure for 12 but not 6 weeks significantly induced middle cerebral artery (MCA) narrowing and thickening, in association with the enhanced expression of inflammatory cytokines, (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interferon gamma (IFN-γ)), vascular cell adhesion molecule 1 (VCAM-1) and inducible nitric oxide synthase (iNOS). O3FA significantly attenuated vascular alterations, even without favorable changes in lipid profiles, in association with reduced expression of IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS in brain vessels. CONCLUSIONS: PM2.5 exposure for 12 weeks aggravates ICA in a dietary model (HCD + short-term L-NAME), which may be mediated by vascular inflammation. O3FA dietary supplementation prevents ICA development and inflammatory reaction in cerebral vessels. METHODS: Adult Sprague-Dawly rats were under filtered air (FA) or PM2.5 exposure with NCD or HCD for 6 or 12 weeks. Half of the HCD rats were treated with O3FA (5 mg/kg/day) by gavage. A total of 600 mg NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL) per rat was administered over two weeks as supplementation in the HCD group. Blood lipids, including LDL, CHO, TG and high density lipoprotein (HDL), were measured at 6 and 12 weeks. ICA was determined by lumen diameter and thickness of the MCA. Inflammatory markers, IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS were assessed by real-time PCR for mRNA and Western blot for protein expression.

3.
Neuroscience ; 334: 226-235, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27522963

RESUMEN

OBJECTIVES: Intracranial atherosclerotic stenosis (ICAS) is one of the most common causes of stroke worldwide and, in particular, has been implicated as a leading cause of recurrent ischemic stroke. We adapted a rat model of atherosclerosis to study brain intracranial atherosclerosis, and further investigated the effect of omega-3 fatty acids (O3FA) in attenuating development of ICAS. MATERIALS AND METHODS: Adult male Sprague-Dawley rats were divided into control normal-cholesterol or high-cholesterol diet groups with or without O3FA for up to 6weeks. During the first 2weeks, NG-nitro-l-arginine methyl ester (l-NAME, 3mg/mL) was added to the drinking water of the high-cholesterol groups. The rats received supplementation with O3FA (5mg/kg/day) by gavages. Blood lipids including low density lipoprotein (LDL), cholesterol (CHO), triglycerides (TG) and high density lipoprotein (HDL) were measured at 3 and 6weeks. The lumen of middle cerebral artery (MCA) and the thickness of the vessel wall were assessed. Inflammatory molecular markers were assessed by Western blot. RESULTS: A high-cholesterol diet exhibited a significant increase in the classic blood markers (LDL, CHO, and TG) for atherosclerosis, as well as a decrease in HDL. These markers were found to be progressively more severe with time. Lumen stenosis and intimal thickening were increased in MCA. O3FA showed attenuation of blood lipids with an absence of morphological changes. O3FA significantly reduced the inflammatory marker CD68 in MCA and prevented monocyte chemotactic protein (MCP-1) and interferon-γ (IFN-γ) expression in the brain. O3FA similarly decreased inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6), markers affiliated with monocyte activity in atherosclerosis. Furthermore, O3FA significantly inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1), a marker for endothelial activation. Lastly, O3FA increased ATP-binding cassette transporter A1 (ABCA1) protein expression via silent information regulator 1 (SIRT1) activation, thus increasing cholesterol efflux from macrophages to HDL. CONCLUSIONS: Long-term O3FA dietary supplementation prevents the development of intracranial atherosclerosis. This O3FA effect appears to be mediated by its prevention of macrophage infiltration into the vessel wall, therefore reducing inflammation and intimal thickening. While similar effects in humans need to be determined, O3FA dietary supplement shows promising results in the prevention of ICAS.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Arteriosclerosis Intracraneal/prevención & control , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Western Blotting , Encéfalo/irrigación sanguínea , Encéfalo/inmunología , Encéfalo/patología , Quimiocina CCL2/metabolismo , Colesterol/administración & dosificación , Colesterol/efectos adversos , Colesterol/sangre , Constricción Patológica/sangre , Constricción Patológica/inmunología , Constricción Patológica/patología , Constricción Patológica/prevención & control , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Arteriosclerosis Intracraneal/sangre , Arteriosclerosis Intracraneal/inmunología , Arteriosclerosis Intracraneal/patología , Masculino , Arteria Cerebral Media/patología , Ratas Sprague-Dawley , Sirtuina 1/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA