Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200163

RESUMEN

Tea polysaccharides (TPSs) are one of the main bioactive constituents of tea with various biological activities such as hypoglycemic effect, antioxidant, antitumor, and immunomodulatory. The bioactivities of TPSs are directly associated with their structures such as chemical composition, molecular weight, glycosidic linkages, and conformation among others. To study the relationship between the structures of TPSs and their bioactivities, it is essential to elucidate the structure of TPSs, particularly the fine structures. Due to the vast variation nature of monosaccharide units and their connections, the structure of TPSs is extremely complex, which is also affected by several major factors including tea species, processing technologies of tea and isolation methods of TPSs. As a result of the complexity, there are few studies on their fine structures and chain conformation. In the present review, we aim to provide a detailed summary of the multiple factors influencing the characteristics of TPS chemical structures such as variations of tea species, degree of fermentation, and preparation methods among others as well as their applications. The main aspects of understanding the structural difference of TPSs and influencing factors are to assist the study of the structure and bioactivity relationship and ultimately, to control the production of the targeted TPSs with the most desired biological activity.


Asunto(s)
Polisacáridos/química , Té/química , Antioxidantes/química , Fermentación/fisiología , Inmunomodulación/efectos de los fármacos , Monosacáridos/química
2.
J Agric Food Chem ; 69(21): 5938-5947, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34003645

RESUMEN

Theaflavins (TFs), formed by the dimerization of green tea catechins during "fermentation" to prepare black tea, possess antioxidant and anti-inflammatory effects. Reported efficacious effects of black tea (∼2% of TFs) or related products come from catechins unless TFs are assayed. The present study aimed to target the preparation of black tea extract (BTE) enriched with theaflavin mono- and digallates majorly from dry tea leaves in aqueous media versus traditional fermentation of fresh leaves. We further investigated the protective function of the produced BTE on rat liver and kidney injury induced by CCl4 and its underlying molecular mechanisms. The results showed that BTE suppressed the activation level of hepatic stellate cells (HSCs), and the secretion of collagen was induced by CCl4. The relative expression levels of TGF-ß, p-ERK1/ERK1, p-ERK2/ERK2, p-Smad1/Smad1, and p-Smad2/Smad2 were reduced to 56, 68, 56, 44, and 32%, respectively, compared with those of CCl4-treated rats. Therefore, BTE enriched with TFs prevented rat hepatic fibrosis through the TGF-ß/Smad/ERK signaling pathway and kidney injury by inhibiting the expression of TGF-ß and proinflammatory cytokines in rats. We predict the broad application of TFs and related products because of their strong antioxidant and inhibitory effects on chronic inflammation.


Asunto(s)
Antioxidantes , , Animales , Biflavonoides , Catequina , Riñón , Hígado , Extractos Vegetales , Ratas
3.
Lasers Med Sci ; 33(1): 135-139, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29067617

RESUMEN

According to the calculated results on the charge distribution of oxygenated heme and deoxygenated heme, and based on the theory of electron excitations in photo-acceptor molecules and the absorption spectra of hemoglobin, it is found that low-level laser within the waveband of about 800-1060 nm can promote the release of oxygen from oxyhemoglobin and improve the oxygen supply of capillaries to surrounding tissues. Furthermore, the reasons have been explained that why the low-level laser at a wavelength of 830 nm is better in the treatment on burn injury and stimulation of hair growth. We also explained why the near-infrared laser of 1064 nm is applied to the forehead to improve cerebral oxygenation in healthy humans. Finally, according to comparison of atomic charge distribution in heme before and after bound to small molecule of carbon monoxide or nitric oxide, it could be inferred that the low-level laser with an appropriate wavelength can promote the carbon monoxide hemoglobin and nitric oxide hemoglobin to dissociate the carbon monoxide molecules and the nitric oxide molecules. This may be used for adjuvant therapy of carbon monoxide poisoning or nitric oxide poisoning.


Asunto(s)
Hemoglobinas/metabolismo , Luz , Terapia por Luz de Baja Intensidad , Oxígeno/metabolismo , Intoxicación por Monóxido de Carbono/radioterapia , Hemoglobina Glucada/metabolismo , Hemo/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico/envenenamiento , Oxihemoglobinas/metabolismo , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA