Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 442: 138490, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38245989

RESUMEN

In this study, the effects of thermal treatments on the structural, rheological, water mobility, antioxidant, and astringency properties of proanthocyanidin (PA)-pectin binary complexes were investigated. Thermal treatments (25, 63, or 85 °C) significantly decreased the particle size but increased the molecular weight of PA-pectin complexes, which indicated that heating altered the intermolecular and intramolecular interactions between PA and pectin. The thermal treatments reduced the apparent viscosity of both pectin and PA-pectin complexes, but the presence of proanthocyanidins (PAs) increased the apparent viscosity and water mobility of the PA-pectin complexes. Antioxidant activity analysis showed that the presence of pectin slightly reduced the antioxidant activity of the PAs, but there were no significant changes in the total phenolic content and antioxidant activity after thermal treatment. Finally, we found that pectin reduced the astringency of the PAs by forming PA-pectin complexes. Moreover, the thermal treatments also significantly reduced the astringency of the PA-pectin complexes.


Asunto(s)
Pectinas , Proantocianidinas , Pectinas/química , Antioxidantes/química , Astringentes , Viscosidad , Agua , Reología
2.
Int J Biol Macromol ; 253(Pt 3): 126828, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37696375

RESUMEN

Tea polysaccharide conjugates (TPC) were used as fillers in the form of biopolymer or colloidal particles (TPC stabilized nanoemulsion, NE) for reinforcing alginate (ALG) beads to improve the probiotic viability. Results demonstrated that adding TPC or NE to ALG beads significantly enhanced the gastrointestinal viability of encapsulated probiotics when compared to free cells. Moreover, the survivability of free and ALG encapsulated probiotics markedly decreased to 2.03 ± 0.05 and 2.26 ± 0.24 log CFU/g, respectively, after 2 weeks ambient storage, indicating pure ALG encapsulation had no effective storage protective capability. However, adding TPC or NE could greatly enhance the ambient storage viability of probiotics, with ALG + NE beads possessing the best protection (8.93 ± 0.06 log CFU/g) due to their lower water activity and reduced porosity. These results suggest that TPC and NE reinforced ALG beads have the potential to encapsulate, protect and colonic delivery of probiotics.


Asunto(s)
Alginatos , Probióticos , Viabilidad Microbiana , Digestión ,
3.
Food Chem ; 410: 135353, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608548

RESUMEN

This study investigated the influence of pile fermentation on the physicochemical, functional, and biological properties of tea polysaccharides (TPS). Results indicated that the extraction yield, uronic acid content, and polyphenol content of TPS greatly increased from 1.8, 13.1 and 6.3 % to 4.1, 27.9, and 7.8 %, respectively, but the molecular weight markedly decreased from 153.7 to 76.0 kDa after pile fermentation. Additionally, the interfacial, emulsion formation, and emulsion stabilization properties of TPS were significantly improved after pile fermentation. For instance, 1.0 wt% TPS isolated from dark tea (D-TPS) can fabricate 8.0 wt% MCT oil-in-water nanoemulsion (d32 ≈ 159 nm) with potent storage stability. Moreover, the antioxidant and α-glucosidase inhibitory activities of D-TPS was higher than that of TPS isolated from sun-dried raw tea (R-TPS). Overall, this study indicated that pile fermentation markedly affected the physicochemical and structural characteristics of TPS, thereby improving their functional and biological properties.


Asunto(s)
Antioxidantes , , Té/química , Fermentación , Emulsiones , Antioxidantes/química , Polisacáridos/química
4.
Food Res Int ; 163: 112123, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596089

RESUMEN

This study fabricated a novel excipient emulsion by adding dark tea polysaccharides to improve the bioaccessibility of lycopene from tomatoes. Results indicated that addition of tea polysaccharides greatly increased the antioxidant activity of excipient emulsions. Additionally, tea polysaccharides markedly improved the physical stability of excipient emulsion when being mixed with tomato puree and passing through a simulated gastrointestinal tract, contributing to an increase in electrostatic and steric repulsion between the droplets. Besides, certain amount of tea polysaccharides (0.05 - 0.2 wt%) could increase the rate and extent of lipid digestion in tomato-emulsion mixtures. Finally, lycopene bioaccessibility was significantly increased (from 16.95 % to 26.21 %) when 0.1 wt% tea polysaccharides were included, which was mainly ascribed to the ability of tea polysaccharides to increase lipid digestion and reduce carotenoid oxidation within the gastrointestinal tract. These results suggest that well-designed excipient emulsions may increase carotenoids bioavailability in the complex food matrices.


Asunto(s)
Solanum lycopersicum , Licopeno , Emulsiones , Excipientes , Carotenoides , Suplementos Dietéticos/análisis , Lípidos ,
5.
Food Chem ; 401: 134156, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099826

RESUMEN

Influences of conventional thermal and innovative non-thermal extraction methods on the physicochemical characteristics and properties of pectic polysaccharides from Choerospondias axillaris peels were investigated. Results showed that ultrasound-assisted extracted polysaccharides (UP) had a heterogeneous nature with lower molecular weight (127.7 kDa) and lower neutral sugar content (35.1%) but higher contents of protein (4.8%) and phenolic compounds (5.1%) than those of polysaccharides extracted by hot water (HP). Additionally, the monosaccharide composition results showed that glucose (77.8%) was the most abundant monosaccharide in HP, while arabinose (67.1%) was the most abundant monosaccharide in UP. The ultrasound significantly induced the degradation of polysaccharide chains but reduced the thermal degradation of phenolics. Finally, we found that UP had higher apparent viscosity, interfacial, emulsifying and antioxidant activity but lower α-glucosidase inhibition activity than those of HP. The results indicated that we could obtain polysaccharides with different functional and biological properties by using different extraction methods.


Asunto(s)
Anacardiaceae , Pectinas , Pectinas/química , Antioxidantes/química , alfa-Glucosidasas/metabolismo , Arabinosa , Anacardiaceae/química , Polisacáridos/química , Monosacáridos , Agua/química , Fenoles , Glucosa
6.
Food Res Int ; 120: 157-166, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000226

RESUMEN

The genome of the nematode Caenorhabditis elegans shares many similarities with that of humans and so it is widely used as a model in pharmaceutical and nutritional studies. C. elegans has a small mouth and therefore very fine lipid particles are required to orally deliver hydrophobic nutraceuticals. In this study, a nanoemulsion-based delivery system was developed to deliver curcumin to C. elegans. Nanoemulsion were fabricated with different mean particle diameters (d32 = 150 nm and 300 nm), lipid types (Medium chain triglyceride, corn, and fish oil), and emulsifier types (Tween 80 and whey protein). The auto-fluorescence intensity of curcumin was used as an indicator of curcumin accumulation in C. elegans. The structure and composition of nanoemulsions had a significant influence on curcumin bioaccumulation in C. elegans. Curcumin bioaccumulation increased with increasing droplet size, was found to be higher in nanoemulsion containing corn oil compared with those containing fish oil or MCT, and was higher for droplets coated by whey protein than by Tween 80. The nematodes treated with curcumin-loaded nanoemulsions showed significantly reduced fat accumulation compared to the control group. This study could provide useful information to widen the application of C. elegans in research involving lipophilic compounds.


Asunto(s)
Bioacumulación , Curcumina/administración & dosificación , Portadores de Fármacos , Emulsiones , Metabolismo de los Lípidos/efectos de los fármacos , Tamaño de la Partícula , Extractos Vegetales/administración & dosificación , Tejido Adiposo , Animales , Disponibilidad Biológica , Caenorhabditis elegans , Aceite de Maíz/metabolismo , Curcumina/metabolismo , Curcumina/farmacología , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Emulsionantes , Aceites de Pescado/metabolismo , Modelos Animales , Nanopartículas , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Triglicéridos/metabolismo , Proteína de Suero de Leche
7.
J Med Food ; 20(9): 887-894, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28514198

RESUMEN

Excess fat accumulation and abnormal metabolism are involved in numerous diseases and thus the research on identification of compounds that can regulate energy homeostasis could significantly facilitate the current effort to prevent and/or treat metabolic disorders. Piceatannol, one of the natural stilbenes, was previously found to decrease lipid accumulation of 3T3-L1 adipocytes. However, its role in fat metabolism in vivo is not known. Thus, Caenorhabditis elegans as an animal model was used in the current study to determine the effect of piceatannol on fat accumulation and its underlying mechanisms. The results showed that 50 and 100 µM piceatannol significantly reduced fat accumulation of wild-type worms grown in normal and high-glucose conditions without altering the growth rate, worm length, pumping rate, or moving speed. The current study further indicated that piceatannol decreased the expression of sbp-1 (encodes an ortholog of mammalian sterol regulatory element-binding protein) and its target gene fasn-1 (encodes an ortholog of fatty acid synthase) as well as increased the expression of hosl-1 (encodes an ortholog of hormone-sensitive lipase) in glucose-treated worms. These data suggested that piceatannol reduced fat accumulation in C. elegans by suppression of genes involved in lipid synthesis and possibly through stimulation of lipolysis. Given that piceatannol exerts similar effects in both C. elegans and 3T3-L1 cells, our finding could provide a mechanistic insight into the role of piceatannol in lipid metabolism in mammals.


Asunto(s)
Adipocitos/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Grasas/metabolismo , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glucosa/metabolismo , Ratones , Modelos Animales
8.
J Med Food ; 19(4): 427-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26991055

RESUMEN

Cranberry phenolic compounds have been linked to many health benefits. A recent report suggested that cranberry bioactives inhibit adipogenesis in 3T3-L1 adipocytes. Thus, we investigated the effects and mechanisms of the cranberry product (CP) on lipid metabolism using the Caenorhabditis elegans (C. elegans) model. CP (0.016% and 0.08%) dose-dependently reduced overall fat accumulation in C. elegans (N2, wild type) by 43% and 74%, respectively, without affecting its pumping rates or locomotive activities. CP decreased fat accumulation in aak-2 (an ortholog of AMP-activated kinase α) and tub-1 (an ortholog of TUBBY) mutants significantly, but only minimal effects were observed in sbp-1 (an ortholog of sterol response element-binding protein-1) and nhr-49 (an ortholog of peroxisome proliferator-activated receptor-α) mutant strains. We further confirmed that CP downregulated sbp-1, cebp, and hosl-1 (an ortholog of hormone-sensitive lipase homolog) expression, while increasing the expression of nhr-49 in wild-type C. elegans. These results suggest that CP could effectively reduce fat accumulation in C. elegans dependent on sbp-1, cebp, and nhr-49, but not aak-2 and tub-1.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Grasas/metabolismo , Extractos Vegetales/farmacología , Vaccinium macrocarpon/química , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA