Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 14: 1279845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179043

RESUMEN

Background: Myasthenia gravis (MG) is an autoimmune disease observed to have connections with gut microbiome. We aimed to systematically assess the causal relationships between gut microbiome, gut microbiome-derived metabolites, and MG using Mendelian randomization (MR) approach. Methods: Summary-level genetic datasets from large-scale genome-wide association studies regarding 196 gut microbial taxa from the MiBioGen consortium (n=18,340), 72 derived metabolites from the TwinsUK and KORA studies (n=7,824), and antiacetylcholine receptor (AChR) antibody-positive MG (case=1,873, control=36,370) were employed for MR causal estimates. The inverse-variance weighted (IVW) method was utilized as the main analysis with MR-Egger, maximum likelihood, simple mode, and weighted median as complements. The tests of Cochran's Q, MR-Egger intercept, Steiger, MR-PRESSO and leave-one-out were implemented for sensitivity analyses. Results: The forward MR estimates of IVW revealed significant causal associations of the abundance of phylum Actinobacteria, class Gammaproteobacteria, family Defluviitaleac, family Family XIII, and family Peptococcaceae with a reduced risk of MG. Conversely, the abundance of phylum Lentisphaerae, order Mollicutes RF9, order Victivallales, and genus Faecalibacterium was causally associated with an increased risk of MG. The reversed MR analysis proved negative causal correlations between the MG and the abundance of family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum. Regarding the derived metabolites, the IVW estimates revealed that elevated levels of beta-hydroxyisovalerate and methionine were causally associated with a decreased risk of MG, while increased levels of choline and kynurenine were linked to an increased risk of MG. Furthermore, genetically predicted MG was associated with a decreased level of cholesterol. The results obtained from complementary MR methods were similar. These findings remained robust in all sensitivity analyses. Conclusion: Our MR findings support the causal effects of specific gut microbiome taxa and derived metabolites on AChR antibody-positive MG, and vice versa, yielding novel insights into prevention and therapy targets of MG. Future studies may be warranted for validation and pursuing the precise mechanisms.


Asunto(s)
Microbioma Gastrointestinal , Miastenia Gravis , Humanos , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Miastenia Gravis/genética , Autoanticuerpos
2.
Cell Biosci ; 9: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31583074

RESUMEN

BACKGROUND: Babao Dan (BBD), a traditional Chinese medicine, has been used as a complementary and alternative medicine to treat multifarious liver diseases. In this study, we aimed to observe its protective effect on ethanol-induced liver injury and explore potential mechanisms. METHODS: Mice pretreated with BBD (0.125, 0.25 and 0.5 g/kg BW) were administrated by ethanol gavage (5 g/kg BW). Liver injury biomarkers and hepatic redox parameters were evaluated by histopathology as well as serum and hepatic content analysis. AML-12 cell was also utilized to determine the efficacy of BBD against ethanol-induced hepatotoxicity. RESULTS: Drunkenness experiment showed that the latency was significantly increased and the drunken sleep time was decreased in mice pretreated with BBD. We then found that BBD could reduce hepatic lipid peroxidation and steatosis induced by ethanol exposure. BBD could also suppress ethanol-induced depletion of hepatic antioxidant enzyme. Besides that, BBD treatment lessened the induction of hepatic cytochrome P450 2E1, a major contributor to ethanol-mediated oxidative stress, and up-regulated the expression of nuclear factor erythroid 2-related factor 2 and its two transcriptional targets hemeoxygenase-1 and glutamate-cysteine ligase catalytic subunit. Furthermore, autophagy induced by BBD contributed to hepatoprotection activity. CONCLUSIONS: Our results suggest that BBD can markedly dispel acute ethanol-induced hepatotoxicity through multiple pathways including attenuation of ethanol-mediated oxidative stress, enhancement of the oxidative defense systems and activation of autophagy.

3.
Cell Biosci ; 9: 77, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31548878

RESUMEN

BACKGROUND: Babaodan (BBD), a traditional Chinese medicine, has been shown to have protective effects during liver injury and ameliorate liver disease progression, but little is known about its effect on non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the effects of BBD on obesity-induced NAFLD. METHODS: C57BL/6 J mice were fed with normal diet, high fat diet (HFD) or HFD + BBD for 8 weeks. Weights of all mice were recorded every 3 days. At the end of the experiments, the level of livers, kidneys and adipose tissues of each animal was weighed. Blood serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) cholesterol, low density lipoprotein cholesterol (LDL-C), glucose and leptin were detected with appropriate test kits. Haematoxylin-eosin (HE), Masson trichrome and Oil Red O staining of the liver were performed. We applied immunohistochemical analysis to investigate the expression of TNF-α, IL-6 and leptin in liver tissue. The expression of genes related lipid anabolism (SREBP1-c, ACC, SCD-1, LXRα and CD36) and ß-oxidation (CPT-1 and PPARα) in liver and adipose tissues was determined by RT-PCR. The expression of AMPK and p-AMPK was determined by western blot analysis. RESULTS: We found the weight of bodies and tissues (retroperitoneal fat pads, kidneys and livers) of mice fed with HFD + BBD were significantly lower than that of HFD-fed mice. And liver injury induced by HFD was relieved in mice treated with BBD, accompanied with significant reduction were observed in serum ALT/AST activities and alleviated pathological damage. The levels of glucose, TG, TC, HDL-C and LDL-C in the liver or serum were significantly decreased on HFD + BBD group compared with HFD group. Furthermore, BBD treatment reduced the level of TNF-α and IL-6 induced by HFD. The level of leptin in the liver and serum were reduced in mice fed with HFD + BBD than that of HFD-fed mice. Several lipid synthesis genes (SREBP1-c, ACC, SCD-1, LXRα and CD36) were down-regulated and that of ß-oxidation (CPT-1 and PPARα) up-regulated in HFD + BBD group compared with HFD group. In addition, BBD increased the expression of p-AMPK compared with untreated HFD group, which suggested BBD improved the activation of AMPK pathway. CONCLUSION: In summary, our results indicate that BBD has potential applications in the prevention and treatment of NAFLD, which may be closely related to its effect on lipid metabolism via activation of AMPK signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA