Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1888-1896, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35534259

RESUMEN

Angong Niuhuang Pills(AGNHP) are effective in clearing heat, removing the toxin, and eliminating phlegm for resuscitation. Clinically, it is widely used to treat various diseases such as febrile convulsion due to heat attacking pericardium, but its therapeutic effects on heart failure(HF) have not been well recognized. In this study, the profiles of differential metabolites regulated by AGNHP were identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of AGNHP against HF was illustrated based on the integrated analysis of pharmacological data and metabolic molecular network. The HF model was induced by isoproterenol in mice. After oral administration of AGNHP for one week, cardiac functions in HF mice were evaluated by echocardiography, and serum samples of mice were collected for metabolomics analysis. Eight differential metabolites of AGNHP against HF were screened out through partial least square discriminant analysis(PLS-DA) and input into MetaboAnalyst for the analysis of metabolic pathways. Moreover, the critical metabolic pathways regulated by AGNHP were enriched according to the potential targets of major compounds in AGNHP. After AGNHP treatment, the recovered index of relative content of some metabolites underwent cross-scale fusion analysis with therapeutic efficacy data, followed by "compound-reaction-enzyme-gene" network analysis. It is inferred that the anti-HF effects of AGNHP may be attributed to the metabolism of arachidonic acid, amino acid, glycerophospholipid, and linoleic acid. The cross-scale polypharmacological analysis method developed in this study provides a new method to interpret scientific principles of AGNHP against HF with modern technologies.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión , Insuficiencia Cardíaca/tratamiento farmacológico , Metabolómica , Ratones
2.
J Ethnopharmacol ; 292: 115205, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35307576

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: BBD is a well-known traditional Chinese medicine widely used in clinic to treat viral hepatitis, cholecystitis, angiocholitis and urinary tract infection. According to traditional medicinal theory, BBD exerts the effects of "clearing and humid heat, activating blood and removing toxicity, curing jaundice and relieving pain", the signs of which are recognized as common symptoms of inflammation during infectious diseases in modern medicine. AIM OF THE STUDY: To determine the therapeutic effect of BBD on bacterial endotoxin lipopolysaccharide (LPS) induced sepsis and to investigate the relevant pharmacological and molecular mechanisms of action whereby BBD mitigates inflammation. MATERIALS AND METHODS: In vivo, a mouse sepsis model was induced by intraperitoneally injection of LPS; the BBD were formulated as drug suspension for intragastric administration. The survival rate, secretion of pro-inflammatory cytokines of IL-1ß and TNF-α, and multiple organ injury of lung, liver and spleen were examined. In vitro, peritoneal macrophages (PMs) were stimulated with LPS plus ATP for NLRP3 inflammasome activation; polar gradient extractions of BBD from ultrapure water (sample 1) followed by 70% ethanol (sample 2) were added as interventions. In addition to detect the secretion of IL-1ß and TNF-α, the activation of NF-κB, ASC-speck formation and ASC oligomerization were examined by western blotting and immunofluorescent stainning. Eventually, the extractions of BBD were applied for UPLC-QTOF-MS analyses; refer to the identified chemicals, the bioactive compounds in BBD with anti-NLRP3 inflammasome activities were discussed. RESULTS: BBD improved the survival of sepsis mice accomplished with diminished inflammatory cytokines production and multiple organ injury. Mechanistically, BBD inhibited both the NF-κB pathway and the assembly of NLRP3 complex in PMs. There were 29 chemical compounds identified from sample 1 and 20 from sample 2. Both samples contained bile acids and saponins and sample 2 contained 2 extra chemicals in the category of bile acids. CONCLUSIONS: BBD presents therapeutic role of endotoxin induced sepsis by inhibiting NLRP3-medaited inflammasome activation, which supports its traditional use for the treatment of infectious diseases. The bile acids and saponins are most likely related to the anti-NLRP3 inflammasome activation effect of BBD.


Asunto(s)
Saponinas , Sepsis , Animales , Ácidos y Sales Biliares/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Macrófagos , Medicina Tradicional China , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Saponinas/farmacología , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA