Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 118: 154934, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393828

RESUMEN

BACKGROUND: Ischemic stroke is caused by local lesions of the central nervous system and is a severe cerebrovascular disease. A traditional Chinese medicine, Yiqi Tongluo Granule (YQTL), shows valuable therapeutic effects. However, the substances and mechanisms remain unclear. PURPOSE: We combined network pharmacology, multi-omics, and molecular biology to elucidate the mechanisms by which YQTL protects against CIRI. STUDY DESIGN: We innovatively created a combined strategy of network pharmacology, transcriptomics, proteomics and molecular biology to study the active ingredients and mechanisms of YQTL. We performed a network pharmacology study of active ingredients absorbed by the brain to explore the targets, biological processes and pathways of YQTL against CIRI. We also conducted further mechanistic analyses at the gene and protein levels using transcriptomics, proteomics, and molecular biology techniques. RESULTS: YQTL significantly decreased the infarction volume percentage and improved the neurological function of mice with CIRI, inhibited hippocampal neuronal death, and suppressed apoptosis. Fifteen active ingredients of YQTL were detected in the brains of rats. Network pharmacology combined with multi-omics revealed that the 15 ingredients regulated 19 pathways via 82 targets. Further analysis suggested that YQTL protected against CIRI via the PI3K-Akt signaling pathway, MAPK signaling pathway, and cAMP signaling pathway. CONCLUSION: We confirmed that YQTL protected against CIRI by inhibiting nerve cell apoptosis enhanced by the PI3K-Akt signaling pathway.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Daño por Reperfusión , Animales , Ratones , Ratas , Multiómica , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Biología Molecular , Daño por Reperfusión/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular
2.
Artículo en Chino | WPRIM | ID: wpr-981442

RESUMEN

Poria(Fu Ling) is a bulk traditional Chinese medicine(TCM)with a long history and complex varieties. The royal medical records of the Qing Dynasty include multiple medicinal materials of Fu Ling, such as Bai Fu Ling(white Poria), Chi Fu Ling(rubra Poria), and Zhu Fu Ling(Poria processed with cinnabaris). The Palace Museum preserves 6 kinds of specimens including Fu Ling Ge(dried Poria), Bai Fu Ling, Chi Fu Ling, Zhu Fu Ling, Bai Fu Shen(white Poria cum Radix Pini), and Fu Shen Mu(Poria cum Radix Pini). After trait identification and textual research, we found that Fu Ling Ge was an intact sclerotium, which was processed into Fu Ling Pi(Poriae Cutis), Bai Fu Ling and other medicinal materials in the Palace. The Fu Ling in the Qing Dynasty Pa-lace was mainly from the tribute paid of the officials in Yunnan-Guizhou region. The tribute situation was stable in the whole Qing Dynasty, and changed in the late Qing Dynasty. The cultural relics of Fu Ling in the Qing Dynasty Palace confirm with the archival documents such as the royal medical records and herbal medicine books, providing precious historical materials for understanding Fu Ling in the Qing Dynasty and a basis for the restoration of the processing of the Fu Ling in the Qing Dynasty Palace.


Asunto(s)
Animales , Poria , China , Libros , Escarabajos , Registros Médicos , Wolfiporia
3.
Artículo en Inglés | MEDLINE | ID: mdl-36225193

RESUMEN

Postinfectious irritable bowel syndrome (PI-IBS) is a highly prevalent gastrointestinal disorder associated with immune dysregulation and depression- and anxiety-like behaviors. Through traditional medicine, the active ingredient of Paeoniae Radix called paeoniflorin (PF) was previously found to prevent the symptoms of PI-IBS. However, there is limited information on the effects of PF on intestinal function and depression- and anxiety-like symptoms in PI-IBS animal models. Here, we aimed to determine the effects of PF treatment on the symptoms of PI-IBS in a rat model. The PI-IBS rat model was established via early postnatal sibling deprivation (EPSD), trinitrobenzenesulfonic acid (TNBS), and chronic unpredictable mild stress (CUMS) stimulation and then treated with different dosages of PF (10, 20, and 40 mg/kg) and leptin (1 and 10 mg/kg). The fecal water content and body weight were measured to evaluate the intestinal function, while the two-bottle test for sucrose intake, open field test (OFT), and elevated plus maze test (EMT) were performed to assess behavioral changes. The serum leptin levels were also measured using an enzyme-linked immunosorbent assay. Furthermore, the expressions of leptin and its receptor, LepRb, were detected in colonic mucosal tissues through an immunohistochemical assay. The activation of the PI3K/AKT signaling pathway and the expression of brain-derived neurotrophic factor (BDNF) were also detected via western blotting. After the experimental period, the PI-IBS rats presented decreased body weight and increased fecal water content, which coincided with elevated leptin levels and heightened depression- and anxiety-like behaviors (e.g., low sucrose intake, less frequency in the center areas during OFT, and fewer activities in the open arms during EMT). However, the PF treatment ameliorated these observed symptoms. Furthermore, PF not only inhibited leptin/LepRb expression but also reduced the PI3K/AKT phosphorylation and BDNF expression in PI-IBS rats. Notably, cotreatment with leptin (10 mg/kg) reduced the effects of PF (20 mg/kg) on colonic fibrosis, leptin/LepRb expression, and PI3K/AKT activation. Therefore, our findings suggest that leptin is targeted by PF via the leptin/LepRb pathway, consequently ameliorating the symptoms of PI-IBS. Our study also contributes novel insights for elucidating the pharmacological action of PF on gastrointestinal disorders and may be used for the clinical treatment of PI-IBS in the future.

4.
Food Funct ; 13(20): 10724-10736, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36177734

RESUMEN

Intrauterine growth restriction (IUGR), one of the major complications of pregnancy, is characterized by low birth weight and results in higher risks for long-term problems including developing metabolic and cardiovascular diseases. Short-chain fatty acids (SCFAs), especially propionate, have been reported to correct glucose and lipid disorders in metabolic diseases. We hypothesized that maternal propionate supplementation could prevent glucose and lipid metabolic disturbance in hypoxia-induced IUGR. Here, in our study, maternal hypoxia was induced from gestational day (GD) 11 to GD 17.5 to establish an IUGR mouse model. Maternal propionate treatment reversed reduced birth weight in male IUGR offspring. Hepatic transcriptomics demonstrated that SP treatment significantly lowered glucose and lipid metabolism-related genes (Scd1, G6pc, Pck1 and Fasl) in IUGR offspring. KOG enrichment analysis showed that propionate-induced down-regulated differential expressed genes (DEGs) mainly belonged to lipid transport and metabolism. KEGG enrichment results showed that the down-regulated DEGs were mostly enriched in PPAR and FoxO signaling pathways. We also found that maternal oral administration of SP decreased serum lipid content, attenuated hepatic insulin resistance and liver lipid accumulation, reduced hepatic key gene expressions of gluconeogenesis and lipogenesis, increased energy expenditure and improved liver function in 11-week-old male IUGR offspring. These results indicate that maternal propionate supplementation increases birth weight and corrects hepatic glucose and lipid metabolic disturbance and energy expenditure in male mice born with IUGR, which may provide a basis for using propionate to treat IUGR disease.


Asunto(s)
Retardo del Crecimiento Fetal , Glucosa , Animales , Peso al Nacer , Suplementos Dietéticos , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/metabolismo , Glucosa/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Hígado/metabolismo , Masculino , Ratones , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Embarazo , Propionatos/metabolismo
5.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744822

RESUMEN

Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.


Asunto(s)
Eucommiaceae , Hipertensión , Enfermedades Neurodegenerativas , China , Suplementos Dietéticos , Eucommiaceae/química , Humanos
6.
Artículo en Inglés | WPRIM | ID: wpr-929243

RESUMEN

Pueraria thomsonii has long been used in traditional Chinese medicine. Isoflavonoids are the principle pharmacologically active components, which are primarily observed as glycosyl-conjugates and accumulate in P. thomsonii roots. However, the molecular mechanisms underlying the glycosylation processes in (iso)flavonoid biosynthesis have not been thoroughly elucidated. In the current study, an O-glucosyltransferase (PtUGT8) was identified in the medicinal plant P. thomsonii from RNA-seq database. Biochemical assays of the recombinant PtUGT8 showed that it was able to glycosylate chalcone (isoliquiritigenin) at the 4-OH position and glycosylate isoflavones (daidzein, formononetin, and genistein) at the 7-OH or 4'-OH position, exhibiting no enzyme activity to flavonones (liquiritigenin and narigenin) in vitro. The identification of PtUGT8 may provide a useful enzyme catalyst for efficient biotransformation of isoflavones and other natural products for food or pharmacological applications.


Asunto(s)
Clonación Molecular , Genisteína , Glucosiltransferasas/metabolismo , Isoflavonas/farmacología , Pueraria/química
7.
Artículo en Chino | WPRIM | ID: wpr-940315

RESUMEN

The name, origin, place of origin, medicinal parts, harvesting and processing of lotus are verified by consulting ancient Chinese herbal medicines and medical books, combined with modern literature, providing a basis for the development of famous classical formulas containing lotus. According to textual research, the original base of lotus is Nelumbo nucifera since ancient times, rhizome (Nelumbinis Rhizomatis Nodus), leaf (Nelumbinis Folium), seed (Nelumbinis Semen), embryo (Nelumbinis Plumula), receptacle (Nelumbinis Receptaculum), stamen (Nelumbinis Stamen) and other medicinal parts of N. nucifera can be used as medicine and have different clinical effects. Nelumbinis Semen was originally produced in Henan, and then gradually expanded to Jiangnan. Today, it can be cultivated and planted throughout the country, with Fujian, Hunan, and Jiangxi as the authentic production areas. After combing the medicinal parts of N. nucifera and the historical evolution of its processing, it is suggested that the dried and mature fruits of N. nucifera taking in autumn and removing the shell and Nelumbinis Plumula should be used in Qingxin Lianziyin. Nelumbinis Folium in Erdongtang should be harvested in summer and autumn, and the raw products was used as medicine and processed in accordance with the provision of the 2020 edition of Chinese Pharmacopoeia.

8.
Artículo en Chino | WPRIM | ID: wpr-940332

RESUMEN

Through consulting the ancient herbal and medical books, combined with the field investigation, the name, origin, collection and processing of Dendrobium medicinal materials were researched, which provided a basis for the development of famous classical formulas containing this kind of herbs. Due to the wide distribution of D. officinale, the Dendrobium species represented by D. officinale and D. huoshanense, which are short, fleshy and rich in mucus, should be the most mainstream of Dendrobium medicinal materials in previous dynasties. Compared with Shihu, Muhu with loose texture, long and hollow is born on trees. According to the characteristic description, it should be D. nobile, D. fimbriatum and so on, of which D. nobile was the mainstream. The Chinese meaning of Jinchai was confused in the past dynasties, so it was not suitable to be treated as a plant name. The production areas of Dendrobium medicinal materials in the past dynasties have changed with the discovery of varieties, artificial cultivation and other factors. Lu'an, Anhui province, was the earliest recorded in the Han and Wei dynasties. Since the Tang and Song dynasties, it had been extended to Guangdong and Guangxi, and it was considered that "Dendrobii Caulis in Guangnan was the best". In the Ming dynasty, Sichuan and Zhejiang products were highly praised, and in the Qing dynasty, Huoshan products were highly praised. Dendrobium medicinal materials had been used as medicine by stems in all dynasties. The medicinal materials were divided into fresh products and dry products. The fresh products can be used immediately after removing the sediment from the roots. The dry products need further processing, most of them used wine as auxiliary materials for steaming, simmer to paste or decoction into medicine. D. officinale and D. huoshanense have special processing specifications since the middle of Qing dynasty, that is, "Fengdou". According to the research results, in Ganluyin, the effect of Dendrobium medicinal materials is mainly heat clearing, and D. nobile with bitter taste can be selected. The main effect of Dendrobium medicinal materials in Dihuang Yinzi is tonic, D. officinale or D. huoshanense can be selected.

9.
Artículo en Chino | WPRIM | ID: wpr-940333

RESUMEN

In this study, name, origin, producing areas, harvesting time and processing methods of ancient Alismatis Rhizoma were systematically researched by consulting the literature of ancient herbs, medical and prescription books, so as to provide a basis for the development of famous classical formula containing this herb. According to textual research, the main base of ancient Alismatis Rhizoma was Alisma plantago-aquatica and A. orientale. A. canaliculatum and A. gramineum and other genera were sometimes used as the source of Alismatis Rhizoma, there was a confusion of medicinal varieties. The earliest producing area of Alismatis Rhizoma was in today's Henan province, and later Hanzhong, Shaanxi province, became the high-quality producing area of Alismatis Rhizoma. Since the Ming dynasty, its production area expanded to Fujian. In the Qing dynasty, Jian'ou in Fujian was the authentic production area of Alismatis Rhizoma. In the period of the Republic of China, Sichuan and Jiangxi were added to the production areas of Alismatis Rhizoma. Based on the research results, it is suggested that the dried tubers of A. orientale from Fujian and Jiangxi or A. plantago-aquatica from Sichuan should be used in the famous classical formulas. In ancient times, Alismatis Rhizoma was processed by wine, but most of the standards and specifications in modern times are no longer included the processing specifications of Alismatis Rhizoma with wine. Although salt-processed Alismatis Rhizoma is commonly used in modern times, it didn't become one of the main processing methods until the Qing dynasty. According to the relevant national documents, it is suggested that Alismatis Rhizoma without clear processing requirements in famous classical formulas should be used as raw products, and the formulas with processing requirements should be selected as processed products such as salt and wine according to the meaning of the formulas.

10.
Artículo en Chino | WPRIM | ID: wpr-940334

RESUMEN

By consulting the ancient herbal and medical books, combined with modern literature, the name, origin, geoherbalism, harvesting and processing changes of Bambusae Caulis in Taenias in famous classical formulas were sorted out. According to the research, ancient doctors only approved three kinds of bamboo medicinal materials, namely, Jinzhu (䈽竹), Kuzhu (苦竹) and Danzhu (淡竹), and took bamboo leaves, made Bambusae Caulis in Taenias and Zhuli (竹沥) for medicine. Bamboo medicinal materials with different origins have different properties, tastes and effects, after clinical optimization, it is gradually considered that Danzhu is the best source of Bambusae Caulis in Taenias and Zhuli. According to the morphological description of the original plants and the attached drawings, it is considered that the Danzhu in ancient Chinese materia medica should be Phyllostachys nigra var. henonis, which has been included in the 2020 edition of Chinese Pharmacopoeia as one of the genuine sources of Bambusae Caulis in Taenias. Therefore, It is suggested that P. nigra var. henonis can be added as the source of Bambusae Caulis in Taenias in famous classical formulas, and the medicinal part is the dry middle layer of its stem. Ginger-processed can increase the anti emetic effect of Bambusae Caulis in Taenias, and the three formulas involving Bambusae Caulis in Taenias from The Catalogue of Ancient Famous Classical Formulas (The First Batch) all contain ginger, and the processing method of Bambusae Caulis in Taenias is not marked in the original formula, so it is suggested to use raw products in the three formulas of Jupi Zhurutang, Wendantang and Zhurutang.

11.
Artículo en Chino | WPRIM | ID: wpr-940336

RESUMEN

Based on various ancient documents such as materia medica, prescription books, classics and history, combined with relevant research materials in modern times, this paper made a textual research on the name, origin, geoherbalism, harvesting time, processing methods of Chuanxiong Rhizoma, which provides a basis for the development of famous classical formulas containing this herb. According to the textual research, the original name of Chuanxiong is Xiongqiong (芎䓖), which was first recorded in Shennong Bencaojing , there are many aliases and trade names in the past dynasties. Since the Song dynasty, doctors all take Xiongqiong produced in Sichuan as the best medicine, so they take Chuanxiong as the rectification of name. In the early stage, the origin of Chuanxiong Rhizoma was relatively complicated, and the main origin was Ligusticum chuanxiong, which was a cultivated and domesticated species of Ligusticum. However, wild related plants of Ligusticum are still used as medicine. After the Ming dynasty, new cultivated varieties appeared in various places, such as Jiangxi L. sinense cv. Fuxiong, which gradually turned to self-production and self-marketing after the Republic of China. After several changes in the authentic producing area of Chuanxiong Rhizoma, Tianshui in Gansu province was highly praised in the Tang dynasty, and Dujiangyan in Sichuan province was the best place in the Song dynasty and later dynasties. Chuanxiong Rhizoma has been widely used in the past dynasties as raw products, and it has also been processed with excipients. For example, wine-processed products can enhance the effect of promoting blood circulation, promoting Qi circulation and relieving pain. There are other processing methods such as stir-frying and vinegar processing. Chuanxiong Rhizoma in the famous classical formulas can be selected according to this research conclusion.

12.
Artículo en Chino | WPRIM | ID: wpr-940337

RESUMEN

Through the combing of ancient books of Chinese herbal medicine in the past dynasties, a textual research of Coptidis Rhizoma involved the name, origin, medicinal parts, producing area, quality evaluation, harvesting and processing methods in famous classical formulas was conducted in this paper. After textual research, the mainstream varieties of Coptidis Rhizoma in the Ranunculaceae family before Tang and Song dynasties were Coptis chinensis and C. chinensis var. brevisepala, after the Ming and Qing dynasties, C. deltoidea, C. teeta and C. omeiensis were gradually praised. In ancient times, the authentic producing area of Coptidis Rhizoma has the characteristics of gradually moving to the west. The eastern Coptidis Rhizoma was highly praised in the early stage, while in the later stage, western Coptidis Rhizoma like chicken feet was highly praised. In the early stage, western Coptidis Rhizoma probably originated from C. chinensis and its genus, while Coptidis Rhizoma like chicken feet was cultivated, and no wild species has been found so far. As Coptidis Rhizoma has mixed use of multiple origins in ancient books of past dynasties, based on the current shortage of market resources in C. teeta and C. deltoidea, there are also endangered and protected plants of C. chinensis var. brevisepala and C. omeiensis, combined with the mainstream medicines and resources of past generations, it is recommended to choose C. chinensis as the base of the formulas. In ancient times, there were many processing methods for Coptidis Rhizoma, such as frying and wine-, ginger-, honey-processed. In the process of developing famous classical formulas, the appropriate processing specifications of Coptidis Rhizoma should be selected based on the original source records and the requirements of the medicinal material.

13.
Artículo en Chino | WPRIM | ID: wpr-940339

RESUMEN

This paper made a systematic textual research on the historical evolution and changes of the name, origin, producing area, harvesting and processing methods of Jujubae Fructus used in famous classical formulas by referring to the ancient literature, so as to provide a basis for the sampling and research of the formulas containing the medicinal materials. According to textual research, there are many names of Jujubae Fructus, most of which are named by characters or producing areas, which are called Dazao. Ziziphus jujuba has always been the mainstream variety in all dynasties, and Z. jujuba var. inemmis has also been used. Considering that the differences between the two are not obvious, we can use Z. jujuba and Z. jujuba var. inemmis as the origins of Dazao. The germplasm resources of Jujubae Fructus are rich, which are distributed all over the country. Qingzhou (now Shandong), Jinzhou (now Shanxi) Jiangzhou (now Shanxi), Puzhou (now Shanxi) have been recorded as authentic producing areas of Jujubae Fructus in the past dynasties, especially in Shandong. At the beginning of the 21st century, the planting of Jujubae Fructus in Xinjiang gradually developed, and now has a high market recognition, becoming an emerging production area of high-quality samples. Harvest period of Jujubae Fructus is mostly August in the past dynasties, and this is basically the same as today. The main processing method is simple cleansing and drying. Through textual research, it is suggested that Jujubae Fructus in famous classical formulas should be mainly from Shandong, Shanxi and other traditional high-quality producing areas, the processing method should follow the 2020 edition of Chinese Pharmacopoeia for simple cleansing and drying.

14.
Artículo en Chino | WPRIM | ID: wpr-940340

RESUMEN

Based on the ancient literature of all dynasties, this article makes a systematic textual research on the name, origin, producing area, quality, harvesting and processing of Magnoliae Officinalis Cortex used in the famous classical formulas, and clarifies its information of each link in different historical periods, so as to provide a reference and basis for the development and utilization of the related formulas. The results showed that the main varieties of Magnoliae Officinalis Cortex were Magnolia officinalis or M. officinalis var. biloba. The main production areas are Hubei, Sichuan, Chongqing and other places, forming the famous authentic medicine. The processing methods of the past dynasties are mainly cleansing and processing with ginger. In the formulas clearly marked with ginger processing, ginger-processed products is suggested to choose. If not clearly marked, raw or ginger-processed products can be used as needed.

15.
Artículo en Chino | WPRIM | ID: wpr-940341

RESUMEN

Through consulting the ancient and modern literature, this paper makes a textual research on the name, origin, producing area, harvesting and processing methods of Asini Corii Colla, so as to provide a basis for the development of the famous classical formulas containing the medicinal material. Before the Tang dynasty, cow leather was the main source of Asini Corii Colla, and donkey was rare as an introduced species. From the end of Tang dynasty to Song dynasty, due to the development of doctors' understanding of the properties and effects of medicines, with the increase of the number of donkeys and the limitation of the use of cow leather, the source of Asini Corii Colla changed from cow leather to donkey skin. During the Ming and Qing dynasties, the theory of medicine property was further developed, and all doctors basically agreed that black donkey skin and E-well water were two essential factors for making genuine Asini Corii Colla. Therefore, it is suggested that Asini Corii Colla should take Equus asinus as the authentic origin in the development of the famous classical formulas, attach importance to the quality of water source, take Liaocheng in Shandong province as the authentic producing area, and the processing should be carried out in accordance with the requirements of the 2020 edition of Chinese Pharmacopoeia.

16.
Artículo en Chino | WPRIM | ID: wpr-940342

RESUMEN

Through consulting the ancient and modern literature, this paper makes a textual research on the name, origin, producing area, harvesting and processing of Poria, so as to provide a basis for the development of the famous classical formulas containing this medicinal material. The description of Poria and the characteristics of the attached figures in the Chinese herbal literature of the past dynasties are consistent with Poria cocos. The medicinal parts are dried sclerotia or P. cocos peel. Poria was originally produced in Taishan, Shandong province. In the Tang dynasty, along with the change of pine forest resources, producing area of Poria was transferred to Huashan area in Shaanxi province. In the Ming dynasty, the authentic producing area was transferred to Yunnan, and has continued to now. In ancient times, the processing methods of Poria were steaming, boiling, slicing, mashing and other subsequent processing after peeling. It is suggested that Poria in famous classical formulas should be sliced according to the 2020 edition of Chinese Pharmacopoeia.

17.
Artículo en Chino | WPRIM | ID: wpr-940343

RESUMEN

Through consulting the ancient herbal medicine, prescription books and medical books, combined with modern relevant literature, standards and other information, this paper made a textual research on the name, origin, producing areas, harvesting and processing methods of Astragali Radix according to different historical development periods, providing a basis for the development of famous classical formulas containing Astragali Radix. According to the textual research, the original name of Astragali Radix is Huangqi, and "Qi" originally refers to the medicinal material Zhimu. Some people began to mistake it for Huangqi in the Ming dynasty, and then gradually used Astragali Radix as a medicinal material. The mainstream basis of Astragali Radix can be determined as the dried roots of Astragalus membranaceus var. mongholicus or A. membranaceus. In different historical periods, A. floridus, A. chrysopterus, A. emestii and other plants of Astragalus or even non-Astragalus were used as local Astragali Radix. The earliest production areas of Astragali Radix were Sichuan, Shaanxi, and Gansu, and then gradually expanded to the northeast. Since the Song dynasty, Mianqi in Shanxi province has been regarded as the genuine variety. In the Qing dynasty, besides Shanxi province, Inner Mongolia was also regarded as a genuine place. In the Republic of China, Huangqi produced in northeast China was praised highly. It is mainly produced in Shanxi, Inner Mongolia, Gansu, northeast and other provinces. The main commodity is cultivated products, and the quality of wild imitation cultivation in Datong and Xinzhou is better than other places. There are many processing methods of Huangqi recorded in the materia medica and prescription books, most of which are raw products, and honey processing is the mainstream of processed products. Based on the current situation of resource cultivation and production, 11 famous classical formulas in The Catalogue of Ancient Famous Classical Formulas (The First Batch) containing Huangqi suggested that all use A. membranaceus var. mongholicus, especially those from Datong and Xinzhou in Shanxi Province. In addition to honey processing of Qingxin Lianziyin, it is suggested to use raw products for other formulas.

18.
Chin J Nat Med ; 19(7): 521-527, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34247775

RESUMEN

Hypoxia-inducible factor 1 (HIF-1), as a main transcriptional regulator of metabolic adaptation to changes in the oxygen environment, participates in many physiological and pathological processes in the body, and is closely related to the pathogenesis of many diseases. This review outlines the mechanisms of HIF-1 activation, its signaling pathways, natural inhibitors, and its roles in diseases. This article can provide new insights in the diagnosis and treatment of human diseases, and recent progress on the development of HIF-1 inhibitors.


Asunto(s)
Factor 1 Inducible por Hipoxia , Transducción de Señal , Enfermedad , Humanos , Factor 1 Inducible por Hipoxia/fisiología , Oxígeno
19.
Zhongguo Zhong Yao Za Zhi ; 46(4): 845-854, 2021 Feb.
Artículo en Chino | MEDLINE | ID: mdl-33645089

RESUMEN

Network pharmacology and liver fibrosis(LF) model in vitro were used to analyze the underly mechanism of anti-liver fibrosis effect that induced by Piperis Longi Fructus and its major active compounds. TCMSP and TCMIP were used to search for the chemical constituents of Piperis Longi Fructus, as well as the oral bioavailability(OB), drug-likeness(DL), intercellular permeability of intestinal epithelial cells(Caco-2) and Drug-likeness grading were set as limiting conditions. The related target genes of Piperis Longi Fructus were queried by TCMSP database, while related targets of LF were screened by GeneCards databases. Interaction network was constructed using Cytoscape 3.7.1. These above data were imported into STRING database for PPI network analysis. Enrichment of gene ontology(GO) and pathway analysis(KEGG) within Bioconductor database were utilized to note functions of related targets of Piperis Longi Fructus. Finally, the core targets and pathways were preliminarily verified by in vitro experiments. The effects of piperlongumine(PL), the major active component of Piperis Longi Fructus, on proliferation of rat liver stellate cells(HSC-T6) and expression of α smooth muscle actin(α-SMA) and collagen Ⅰ were investigated. The major factors TNF-α of tumor necrosis factor(TNF) pathway and NF-κB p65, IL-6 protein expressions of LF process were examined. A total of 12 active compounds such as PL were obtained by analyzing the bioavailability and drug-like properties, which inferred to 48 targets. The functional enrichment analysis of GO obtained 1 240 GO items, mainly involving in process of biology and molecular function. A total of 99 signaling pathways were enriched in the KEGG pathway enrichment analysis, including TNF signaling pathway, cGMP-PKG signaling pathway, calcium signaling pathways. CCK-8 assay showed that PL inhibited proliferation of HSC-T6 induced by transforming growth factor-ß1(TGF-ß1). Western blot analysis found that treated with PL suppressed the protein expressions of α-SMA, collagen Ⅰ, TNF-α and p65 in HSC-T6. Enzyme linked immunosorbent assay(ELISA) showed that PL inhibited the expressions of TNF-α and IL-6 in the cluture supertant of HSC-T6 cells. In conclusion, PL could play an anti-liver fibrosis role by regulating TNF/NF-κB signaling pathway. This study provided the mechanism basis of anti-LF effects induced by Piperis Longi Fructus and its major active compounds, which might help for the further study of the mechanism and key targets of Piperis Longi Fructus.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Animales , Células CACO-2 , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , FN-kappa B/metabolismo , Ratas , Transducción de Señal
20.
J Ethnopharmacol ; 272: 113923, 2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-33617968

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tanshinone-Ⅰ (TSNⅠ), a member of the mainly active components of Salvia miltiorrhiza Bunge (Dan Shen), which is widely used for the treatment for modern clinical diseases including cardiovascular and cerebrovascular diseases, has been reported to show the properties of anti-oxidation, anti-inflammation, neuroprotection and other pharmacological actions. However, whether TSNⅠ can improve neuron survival and neurological function against transient focal cerebral ischemia (tMCAO) in mice is still a blank field. AIM OF THE STUDY: This study aims to investigate the neuroprotective effects of TSNⅠ on ischemic stroke (IS) induced by tMCAO in mice and explore the potential mechanism of TSNⅠ against IS by combining network pharmacology approach and experimental verification. MATERIALS AND METHODS: In this study, the pivotal candidate targets of TSNⅠ against IS were screened by network pharmacology firstly. Enrichment analysis and molecular docking of those targets were performed to identify the possible mechanism of TSNⅠ against IS. Afterwards, experiments were carried out to further verify the mechanism of TSNⅠ against IS. The infarct volume and neurological deficit were evaluated by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Longa respectively. Immunohistochemistry was used to observe neuronal death in the hippocampus and cortical regions by detecting the change of NeuN. The predicting pathways of signaling-related proteins were assessed by Western blot in vitro and in vivo experiments. RESULTS: In vivo, TSNⅠ was found to dose-dependently decrease mice's cerebral infarct volume induced by tMCAO. In vitro, pretreatment with TSNⅠ could increase cell viability of HT-22 cell following oxygen-glucose deprivation (OGD/R). Moreover, the results showed that 125 candidate targets were identified, Protein kinase B (AKT) signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and mitogen-activated protein kinases 1 (MAPK1) and AKT1 could be bound to TSNⅠ more firmly by molecular docking analysis, which implies that TSNⅠ may play a role in neuroprotection through activating AKT and MAPK signaling pathways. Meanwhile, TSNⅠ was confirmed to significantly protect neurons from injury induced by IS through activating AKT and MAPK signaling pathways. CONCLUSION: In conclusion, our study clarifies that the mechanism of TSNⅠ against IS might be related to AKT and MAPK signaling pathways, which may provide the basic evidence for further development and utilization of TSNⅠ.


Asunto(s)
Abietanos/farmacología , Accidente Cerebrovascular Isquémico/prevención & control , Fármacos Neuroprotectores/farmacología , Abietanos/uso terapéutico , Abietanos/toxicidad , Animales , Isquemia Encefálica/complicaciones , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos ICR , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo , Quinasas raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA