Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 322: 117590, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38113986

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shuangshen granules (SSG), a nationally patented Chinese medicinal formula, including Panax quinquefolium L., Panax notoginseng (Burkill) F. H. Chen, and Cordyceps sinensis (Berk.) Sacc., has demonstrated remarkable therapeutic effects on pancreatic cancer in clinical treatment for nearly 10 years. Previous pharmacological researches have found that its main components, including ginsenosides and cordycepin have anticancer or preventive effects on pancreatic ductal adenocarcinoma (PDAC), which may be associated with immune metabolism. However, the underlying pharmacological mechanism of SSG in the truncation effect of PDAC progression is still unclear. AIM OF THE STUDY: To comprehensively understand the infiltrating immune cells during the different stages of the PDAC development chain and search for immune-related biomarkers that could potentially serve as drug targets through bioinformatic analysis. Meanwhile, the truncation effect of SSG on PDAC progression was also investigated. MATERIALS AND METHODS: The gene expression profiles at different PDAC developmental stages, including normal pancreas, pancreatic intraepithelial neoplasia (PanIN), and PDAC, were retrieved from the GEO database. The GEO2R tool was used to identify differentially expressed genes among the three groups. Functional enrichment analysis was performed with the GSEA software and Metascape platform. The CIBERSORT algorithm evaluated immune cell infiltration in the three groups, and immune-related biomarkers were identified. Correlation analysis was employed to examine the association between immune cells and the biomarkers. One of these biomarkers was selected for immunohistochemistry validation in human samples. Lastly, the effectiveness of SSG against PDAC progression and the influence on the selected biomarker were validated in vivo. The underlying pharmacological mechanisms were also explored. RESULTS: One dataset was obtained, where the functional enrichment of DEGs primarily involved immune effector processes and cytokine production of immune cells. The differential immune cells reflected during the progression from PanIN to PDAC were B memory cells, monocytes, M2 macrophages, and activated dendritic cells. The upregulation of ACTA2 was closely associated with M2 macrophage regulation. The immunohistochemistry on human samples validated significant differences in ACTA2 expression levels as the PDAC progressed. Moreover, animal experiments revealed that the national patented drug SSG ameliorated the pathological changes, decreased the expression of ACTA2 and its functional protein α-smooth muscle actin during PDAC progression. The underlying pharmacological mechanism was related to the regulation of macrophage polarization and downregulation of TGF-ß/Smad signaling pathway. CONCLUSIONS: The immunosuppressive environment changes during the PDAC progression. ACTA2 is a potential immuned-target for drug prevention of PDAC, while SSG could be a promising drug candidate.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Biología Computacional , Medicamentos Herbarios Chinos
2.
PLoS One ; 18(4): e0284398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37068063

RESUMEN

BACKGROUND: Ginseng-containing traditional medicine preparations (G-TMPs) in combination with fluoropyrimidine-based chemotherapy (FBC) are well-known treatments for advanced gastric cancer (AGC), with a superior efficacy to FBC alone. However, evidence regarding their efficacy remains limited. The purpose of this meta-analysis is to evaluate the efficacy and safety of G-TMPs in combination with FBC for the treatment of AGC. METHODS: Eight electronic databases were searched for randomized controlled trials (RCTs) using G-TMPs with FBC for the treatment of AGC. The primary outcome included the tumor response, while the secondary outcomes included the quality of life (QoL), proportions of peripheral blood lymphocytes, adverse drug reactions (ADRs), and levels of cancer biomarkers. The quality of evidence for each outcome was assessed using GRADE profilers. RESULTS: A total of 1,960 participants were involved in the 26 RCTs included. Patients treated with FBC plus G-TMPs had better objective response (risk ratio [RR] = 1.23, 95% confidence interval [CI]: 1.13 to 1.35, p < 0.00001) and disease control (RR = 1.13, 95% CI: 1.08 to 1.19, p < 0.00001) rates than those treated with FBC alone. Additionally, the combination group had a better QoL, higher proportions of CD3+ T cells, CD4+ T cells, and natural killer cells, as well as a higher CD4+/CD8+ T-cell ratio. Furthermore, lower levels of CA19-9, CA72-4, and CEA were confirmed in the combination treatment group. In addition, G-TMPs reduced the incidence of ADRs during chemotherapy. CONCLUSION: In combination with FBC, G-TMPs can potentially enhance efficacy, reduce ADRs, and improve prognosis for patients with AGC. However, high-quality randomized studies remain warranted. SYSTEMATIC REVIEW REGISTRATION: PROSPERO Number: CRD42021264938.


Asunto(s)
Panax , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/etiología , Antimetabolitos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Medicina Tradicional
3.
Front Pharmacol ; 13: 1036498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313365

RESUMEN

Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.

4.
Front Oncol ; 12: 845613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530347

RESUMEN

Background: Relatively little is known about the effect of traditional Chinese medicine (TCM) on prognosis of non-small cell lung cancer (NSCLC). Methods: In this nationwide, multicenter, prospective, cohort study, eligible patients aged 18-75 years with radical resection, and histologically confirmed stage II-IIIA NSCLC were enrolled. All patients received 4 cycles of standard adjuvant chemotherapy. Patients who received Chinese herbal decoction and (or) oral Chinese patent medicine for a cumulative period of not less than 6 months were defined as TCM group, otherwise they were considered as control group. The primary endpoint was DFS calculated using the Kaplan-Meier method. A time-dependent Cox proportional hazards model was used to correct immortal time bias. The secondary endpoints included DFS in patients of different characteristics, and safety analyses. This study was registered with the Chinese Clinical Trial Registry (ChiCTR1800015776). Results: A total of 507 patients were included (230 patients in the TCM group; 277 patients in the control group). The median follow-up was 32.1 months. 101 (44%) in the TCM group and 186 (67%) in the control group had disease relapse. The median DFS was not reached in the TCM group and was 19.4 months (95% CI, 14.2 to 24.6) in the control group. The adjusted time-dependent HR was 0.61 (95% CI, 0.47 to 0.78), equalling to a 39% reduction in the risk of disease recurrence with TCM. the number needed to treat to prevent one patient from relapsing was 4.29 (95% CI, 3.15 to 6.73) at 5 years. Similar results were observed in most of subgroups. Patients had a significant improvement in white blood cell decrease, nausea, decreased appetite, diarrhea, pain, and fatigue in the TCM group. Conclusion: TCM may improves DFS and has a better tolerability profile in patients with stage II-IIIA NSCLC receiving standard chemotherapy after complete resection compared with those receiving standard chemotherapy alone. Further studies are warranted.

5.
Front Oncol ; 12: 828450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280766

RESUMEN

Background: Traditional medicine preparations (TMPs) combined with chemotherapy is widely used for patients with advanced pancreatic cancer (APC); however, its efficacy and safety are still unclear. The purpose of this meta-analysis was to evaluate the clinical efficacy and safety of TMPs combined with chemotherapy for the treatment of APC. Methods: A systematic search of eight electronic databases for randomized controlled trials (RCTs) was conducted from inception to October 15, 2021. Tumor response was identified as primary outcome, whereas quality of life (QoL), cancer biomarkers, and adverse drug reactions (ADRs) were identified as secondary outcomes. Quality of the evidence for each outcome was evaluated by GRADE profiler. Results: In total, 31 RCTs involving 1,989 individuals were included. This meta-analysis showed that TMPs combined with chemotherapy significantly improved the objective response rate (ORR) (RR=1.64, 95% CI [1.43 to 1.88], p <0.00001), disease control rate (DCR) (RR=1.29, 95% CI [1.21 to 1.38], p <0.00001), and QoL (continuous data: SMD=0.81, 95% CI [0.44 to 1.18], p <0.0001, dichotomous data: RR=1.44, 95% CI [1.22 to 1.70], p<0.0001), compared to those with chemotherapy alone. In addition, the combined treatment group also had lower levels of CA19-9 (SMD=-0.46, 95% CI [-0.90 to -0.02], p=0.04) and CEA (SMD=-0.55, 95% CI [-0.93 to -0.17], p=0.004). Moreover, TMPs reduced the ADRs during chemotherapy. Conclusion: This systematic review suggests that TMPs combined with chemotherapy might be a potential option to enhance therapeutic effects and reduce ADRs during the treatment of APC. However, more high-quality randomized controlled trials with more participants are needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=209825, identifier PROSPERO Number: CRD42021264938.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA