Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Fitoterapia ; 172: 105761, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036079

RESUMEN

The taproot of Aconitum carmichaelii Debeaux (AC), a poisonous Traditional Chinese Medicine, has been widely used to treat joint pain, rheumatism and dysmenorrhea. Fermentation is a traditional drug processing method that reduces toxicity or increases efficacy. However, the chemical composition of AC, especially fermented AC, has not been fully elucidated. Therefore, it is necessary to establish a method to characterize the chemical composition of raw and fermented AC. In this study, a structural feature-based comprehensive strategy was employed to identify the chemical components of raw and fermented AC. A highly selective method consisting of mass defect filtering (MDF), ring double bond (RDB), nitrogen rule, and feature MS fragments filtering was established using UPLC-Q-Orbitrap-MS. By the established method, 230 diterpene alkaloids were characterized in raw AC, including 108 amine, 68 monoester, and 54 diester diterpene alkaloids. 145 of them were potential new compounds. Totals of 466 diterpene alkaloids were identified in fermented AC, including 231 amine, 162 monoester, and 73 diester diterpene alkaloids. 397 of them were potential new compounds. Ester hydrolysis, hydroxylation, and demethylation were the major transformation pathways during fermentation. An integrated approach with highly selective based on the structural feature of analytes was established and applied to identify the chemicals in AC. The strategy showed great performance in improving the accuracy and coverage of the identification by using LC-MS.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Alcaloides/química , Alcaloides Diterpénicos , Aconitum/química , Estructura Molecular , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Aminas
2.
Toxicol Lett ; 357: 84-93, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017030

RESUMEN

The association of herb medicine Cortex Dictamni (CD) with severe even fatal hepatotoxicity has been widely reported. Recently, we demonstrated that the metabolic activation of at least ten furanoids in CD was responsible for the liver injury caused by the ethanol extract of CD (ECD) in mice. Protein adduction by reactive metabolites is considered to initiate the process of liver injury. Unlike single chemicals, the mode of and the details of protein modification by multiple components in an herb is unclear. This study aimed to characterize protein adductions derived from the reactive metabolite of furanoids in ECD-treated mice and define the association of protein adduction with liver injury. The hepatic cysteine- and lysine-based protein adducts derived from epoxide or cis-enedione of at least six furanoids were identified in mice. The furanoids with an earlier serum content Tmax were mainly to bind with hepatic glutathione and no protein adducts were formed except for dictamnine. The hepatic proteins were modified by the later absorbed furanoids. The levels of hepatic protein adduct were correlated with the degree of liver injury. In addition, the reactive metabolites of different furanoids can simultaneously bind to the model peptide by the identical reactive moiety, indicating the additive effects of the individual furanoids in the modification of hepatic proteins. In conclusion, hepatic protein adduction by multiple furanoids may play a role in ECD-induced liver injury. The earlier absorbed furanoids were mainly to bind with glutathione whereas the hepatic proteins were modified by the later furanoids.


Asunto(s)
Dictamnus/química , Furanos/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Plantas Medicinales/toxicidad , Proteínas/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas , Cisteína/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/toxicidad , Etanol/química , Glutatión/metabolismo , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Extractos Vegetales/efectos adversos , Plantas Medicinales/química
3.
J Ethnopharmacol ; 278: 114299, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090906

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xian-Ling-Gu-Bao (XLGB) Fufang is herbal formula widely used to treat osteoporosis and other bone disorders. Because of its commonality in the clinical use, there is a safety concern over the use of XLGB combined with other androgen deprivation therapy (ADT) drugs such as flutamide (FLU) that is associated with reduced bone density. To date, there have been no evaluations on the side effects of the drug-drug interaction between XLGB and FLU. AIM OF THE STUDY: The present study was designed to investigate the hepatotoxicity in the context of the combined treatment of XLGB and FLU in a mouse model, and to determine whether the metabolic activation of FLU through induction of CYP1A2 plays a role in the increased hepatoxicity caused by the combination of XLGB and FLU. MATERIALS AND METHODS: C57 mice were administered with either XLGB (6,160 mg/kg), FLU (300 mg/kg), or with the combination of the two drugs. Animals were treated with XLGB for 5 days before the combined administration of XLGB and FLU for another 4 days. The serum of mice from single or the combined administration groups was collected for biochemical analysis. The mouse liver was collected to examine liver morphological changes, evaluate liver coefficient, as well as determine the mRNA expression of P450 isozymes (Cyp1a2, Cyp3a11 and Cyp2c37). For metabolism analysis, mice were treated with XLGB, FLU, or the combination of XLGB and FLU for 24 h. The urine samples were collected for the analysis of FLU-NAC conjugate by UPLC-Q-Orbitrap MS. The liver microsomes were prepared from fresh livers to determine the activity of metabolizing enzyme CYP1A2. RESULTS: The combined treatment of XLGB and FLU caused loss of mice body weight and elicited significant liver toxicity as evidenced by an increased liver coefficient and serum lactate dehydrogenase (LDH) activity as well as pathological changes of fatty lesion of liver tissue. FLU increased hepatic expression of Cyp1a2 mRNA that was further elevated in the liver of mice when administered with both FLU and XLGB. Treatment of FLU resulted in an increase in the expression of Cyp3a11 mRNA that was negated when mice were co-treated with FLU and XLGB. No significant difference in Cyp2c37 mRNA expression was observed among the different treatment groups as compared to the control. Analysis of metabolic activity showed that the combined administration caused a synergic effect in elevating the activity of the CYP1A2 enzyme. Mass spectrometry analysis identified the presence of FLU reactive metabolite derived FLU-NAC conjugate in the urine of mice treated with FLU. Strikingly, about a two-fold increase of the FLU-NAC conjugate was detected when treated with both FLU and XLGB, indicating an elevated amount of toxic metabolite produced from FLU in the present of XLGB. CONCLUSION: FLU and XLGB co-treatment potentiated FLU-induced hepatoxicity. This increased hepatoxicity was mediated through the induction of CYP1A2 activity which in turn enhanced bioactivation of FLU leading to over production of FLU-NAC conjugate and oxidative stress. These results offer warnings about serious side effects of the FLU-XLGB interaction in the clinical practice.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP1A2/metabolismo , Medicamentos Herbarios Chinos/toxicidad , Flutamida/toxicidad , Fitoterapia/efectos adversos , Antagonistas de Andrógenos/administración & dosificación , Antagonistas de Andrógenos/toxicidad , Animales , Citocromo P-450 CYP1A2/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Medicamentos Herbarios Chinos/administración & dosificación , Flutamida/administración & dosificación , Flutamida/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ratones , Estructura Molecular
4.
Toxicol Lett ; 330: 41-52, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32437846

RESUMEN

Many furan containing compounds have been reported to be toxic resulted from the metabolic activation of the furan ring to reactive metabolite (RM). Cortex Dictamni (CD), a widely used herbal medicine, has been reported to cause severe even fatal hepatotoxicity. The injurious components and mechanism of CD-induced liver injury remain unclear. Our preliminary study showed that dictamnine, one major furanoid in CD, caused mouse liver injury via its reactive epoxide metabolite. Besides dictamnine, the major components of CD are series of bioactivation-alerting furanoids. Thus, we hypothesize that series of furanoids in CD may undergo metabolic activation and play a key role in CD-induced liver injury. Here, a single oral dose of 60 g/kg ethanol extract of CD (ECD) caused severe hepatocellular necrosis in mice at 24 h post-dose. ECD-induced liver injury showed a dose- and time-dependent manner. The hepatotoxic effects could be completely abolished by P450 nonselective inhibitor 1-aminobenzotriazole (ABT) and strongly modulated by other P450 modulators. The furanoids-concentrated fraction of ECD was responsible for the hepatotoxicity. At least ten furanoids with high abundance in ECD, such as obakunone, dictamnine, fraxinellone, limonin, were found to be metabolized to reactive epoxide or cis-enedione. The RM levels were consistent with the liver injury degree. Multiple furanoids, rather than single one, cooperatively contributed to the hepatotoxicity. ECD-induced liver injury could be reproduced by a mixture of pure furanoids. In summary, this study provides toxic component profiles of CD and demonstrates that P450-mediated bioactivation of multiple furanoids is responsible for CD-induced liver injury.

5.
J Sep Sci ; 43(3): 590-597, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31701660

RESUMEN

Xanthii Fructus is extensively used as an herbal medicine. Ingestion of this herb is associated with severe hepatotoxicity and nephrotoxicity. Atractyloside and carboxyatractyloside are two dominative toxic constituents in Xanthii Fructus. However, their pharmacokinetic study is lacking. In this study, a novel high-performance liquid chromatography-tandem mass spectrometry method was developed to simultaneously quantify the rat plasma concentrations of atractyloside and carboxyatractyloside. After protein precipitation, the analytes were chromatographic separated on a ZORBAX Eclipse Plus column (2.1 × 150 mm id, 5 µm) under gradient elute. In the negative electrospray ionization mode, the transitions at m/z 725.3→645.4 for atractyloside, m/z 769.3→689.4 for carboxyatractyloside, and m/z 479.2→121.1 for paeoniflorin (the internal standard) were acquired by multiple reaction monitoring. This analytical method showed good linearity over 1-500 ng/mL for atractyloside and 2-500 ng/mL for carboxyatractyloside with acceptable precision and accuracy. No matrix effect, instability and carryover occurred in the analysis procedure. The extraction recoveries were greater than 85.0%. This method was applied to a preliminary pharmacokinetic study by orally administering Xanthii Fructus extract (9 g/kg) to rats, which was useful to evaluate the role of these two compounds in Xanthii Fructus-induced toxicity.


Asunto(s)
Atractilósido/análogos & derivados , Atractilósido/farmacocinética , Medicamentos Herbarios Chinos/farmacocinética , Frutas/química , Extractos Vegetales/farmacocinética , Xanthium/química , Administración Oral , Animales , Atractilósido/administración & dosificación , Atractilósido/sangre , Cromatografía Liquida , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/análisis , Masculino , Medicina Tradicional China , Conformación Molecular , Extractos Vegetales/administración & dosificación , Extractos Vegetales/sangre , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
6.
Liver Int ; 39(3): 427-439, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30079536

RESUMEN

Oleanolic acid (OA) is a triterpenoid that exists widely in fruits, vegetables and medicinal herbs. OA is included in some dietary supplements and is used as a complementary and alternative medicine (CAM) in China, India, Asia, the USA and European countries. OA is effective in protecting against various hepatotoxicants, and one of the protective mechanisms is reprogramming the liver to activate the nuclear factor erythroid 2-related factor 2 (Nrf2). OA derivatives, such as CDDO-Im and CDDO-Me, are even more potent Nrf2 activators. OA has recently been shown to also activate the Takeda G-protein-coupled receptor (TGR5). However, whereas a low dose of OA is hepatoprotective, higher doses and long-term use of OA can produce liver injury, characterized by cholestasis. This paradoxical hepatotoxic effect occurs not only for OA, but also for other OA-type triterpenoids. Dose and length of time of OA exposure differentiate the ability of OA to produce hepatoprotection vs hepatotoxicity. Hepatotoxicity produced by herbs is increasingly recognized and is of global concern. Given the appealing nature of OA in dietary supplements and its use as an alternative medicine around the world, as well as the development of OA derivatives (CDDO-Im and CDDO-Me) as therapeutics, it is important to understand not only that they program the liver to protect against hepatotoxic chemicals, but also how they produce hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado/efectos de los fármacos , Ácido Oleanólico/efectos adversos , Sustancias Protectoras/efectos adversos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citoprotección , Relación Dosis-Respuesta a Droga , Humanos , Hígado/metabolismo , Hígado/patología , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Factores de Tiempo
7.
Toxicol Appl Pharmacol ; 364: 68-76, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578885

RESUMEN

Cortex Dictamni is extensively used as an herbal medicine worldwide, but is believed to induce hepatotoxicity and even causes mortality in many Asian and European countries. As the most abundant furoquinoline alkaloid ingredient of Cortex Dictamni, dictamnine (DIC) can be metabolically activated by CYP3A to an epoxide metabolite, which possesses the potential to induce hepatotoxicity by covalent binding with proteins. As yet, the hepatotoxicity of DIC and the role played by metabolic activation remain unknown. Here, we found that DIC caused acute liver injury in a time- and dose-dependent manner in mice. The hepatic and urinary DIC epoxide intermediates were observed in DIC-treated mice. Ketoconazole, a CYP3A inhibitor, significantly reduced the hepatotoxicity of DIC and inhibited the formation of reactive metabolites of DIC. Moreover, treatment with 2,3-dihydro-DIC, a DIC analog synthesized by selective reduction of the furan moiety, produced no hepatotoxicity in mice, and no reactive metabolite was formed, suggesting a structural necessity of furan moiety in DIC hepatotoxicity. A time course of gradual hepatic glutathione consumption was observed in DIC-treated mice, while depletion of hepatic glutathione by L-buthionine-S,R-sulfoximine enhanced the hepatotoxicity of DIC. Collectively, this study demonstrates that DIC induces acute hepatocellular injury in mice, and that metabolic activation of furan plays a crucial role in DIC-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Sistema Enzimático del Citocromo P-450/metabolismo , Furanos/metabolismo , Hígado/efectos de los fármacos , Preparaciones de Plantas/toxicidad , Quinolinas/toxicidad , Activación Metabólica , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Citocromo P-450 CYP3A , Inhibidores del Citocromo P-450 CYP3A/farmacología , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Cetoconazol/farmacología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Estructura Molecular , Relación Estructura-Actividad , Factores de Tiempo , Toxicocinética
8.
Chem Res Toxicol ; 30(10): 1797-1803, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28960974

RESUMEN

Reactive metabolites (RM) formed from bioactivation of drugs can covalently modify liver proteins and cause mechanism-based inactivation of major cytochrome P450 (CYP450) enzymes. Risk of bioactivation of a test compound is routinely examined as part of lead optimization efforts in drug discovery. Here we described a chemoproteomic platform to assess in vitro and in vivo bioactivation potential of drugs. This platform enabled us to determine reactivity of thousands of proteomic cysteines toward RMs of diclofenac formed in human liver microsomes and living animals. We pinpointed numerous reactive cysteines as the targets of RMs of diclofenac, including the active (heme-binding) sites on several key CYP450 isoforms (1A2, 2E1 and 3A4 for human, 2C39 and 3A11 for mouse). This general platform should be applied to other drugs, drug candidates, and xenobiotics with potential hepatoxicity, including environmental organic substances, bioactive natural products, and traditional Chinese medicine.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/efectos adversos , Sistema Enzimático del Citocromo P-450/metabolismo , Diclofenaco/efectos adversos , Microsomas Hepáticos/efectos de los fármacos , Proteómica , Xenobióticos/efectos adversos , Animales , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Diclofenaco/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Xenobióticos/metabolismo
9.
Clin Ther ; 38(2): 327-37, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26749220

RESUMEN

PURPOSE: Huoxue-Tongluo lyophilized powder for injection (HTLPI), a traditional Chinese medicine preparation, is a compound of Persicae semen and Paeoniae Radix Rubra that is used mainly for treating blood-stasis obstruction syndrome in the acute stage of cerebral ischemic stroke. Amygdalin (AD) and paeoniflorin (PF) are 2 typical bioactive components in HTLPI and were selected as indicators for this pharmacokinetic study of HTLPI. The objective of this study was to investigate the safety profile, tolerability, and pharmacokinetic properties of AD and PF after single and multiple intravenous infusions of HTLPI in healthy Chinese volunteers. METHODS: Twenty-one healthy Chinese subjects were recruited for this open-label, single ascending-dose (3, 6, and 9 g) and multiple-dose (6 g, once daily) study. Safety profile was assessed by adverse events and physical examination throughout the study. Serial plasma and urine samples were analyzed by HPLC-MS/MS. Pharmacokinetic parameters of AD and PF were calculated using noncompartmental analysis. FINDINGS: In the single-dose phase of the study, the mean maximum plasma concentration and the mean area under the plasma concentration-time curve of AD and PF increased proportionally with each dose escalation. In the multiple-dose phase, the steady state was achieved by day 4 after multiple-dose administration of 6 g HTLPI. Mean pharmacokinetic parameters achieved on day 1 were similar to those on day 7. No significant accumulation was observed after repeat doses of 6 g HTLPI. Approximately 79.6% of the administered AD and 48.4% of the administered PF were excreted unchanged in urine within 24 hours. No serious adverse events were observed during the entire study. IMPLICATIONS: The pharmacokinetic properties of AD and PF were linear after a single intravenous infusion of HTLPI in the dose range of 3-9 g. No systemic accumulation was observed with repeat doses of HTLPI. Sex had no significant effect on the pharmacokinetic properties of AD and PF. Intravenous infusion of HTLPI was well tolerated in healthy Chinese subjects.


Asunto(s)
Amigdalina/administración & dosificación , Glucósidos/administración & dosificación , Monoterpenos/administración & dosificación , Adulto , Amigdalina/efectos adversos , Amigdalina/farmacocinética , Pueblo Asiatico , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Glucósidos/efectos adversos , Glucósidos/farmacocinética , Humanos , Infusiones Intravenosas , Masculino , Monoterpenos/efectos adversos , Monoterpenos/farmacocinética , Polvos , Espectrometría de Masas en Tándem , Adulto Joven
10.
Yao Xue Xue Bao ; 50(10): 1330-5, 2015 Oct.
Artículo en Chino | MEDLINE | ID: mdl-26837182

RESUMEN

ABSTRACT: The study aims to develop an LC-MS/MS method for the simultaneous determination of amygdalin and paeoniflorin in urine samples, and to investigate their urinary excretion characteristics in healthy volunteers after intravenous infusion administration of Huoxue-Tongluo lyophilized powder for injection (HTLPI). The urine samples were extracted by methanol, and then separated on a Hedera ODS-2 column with a mobile phase of acetonitrile and 5 mmol · L(-1) ammonium acetate buffer solution containing 0.05% formic acid (20:80). Electrospray ionization source was applied and operated in the positive ion mode using MRM. The method exhibited good linearity over the concentration range of 0.03 -40 µg · mL(-1). The values on both the occasions (intra- and inter-day) were all within 15% at three concentration levels. No matrix effect and carry-over effect were observed. Amygdalin and paeoniflorin were stable in human urine under different storage conditions. Approximately 79.6% of the administered amount of amygdalin was excreted unchanged in urine within 24 h and which was 48.4% for paeoniflorin. The developed LC-MS/MS method can be applied to evaluate the urinary excretion of amygdalin and paeoniflorin.


Asunto(s)
Amigdalina/orina , Glucósidos/orina , Monoterpenos/orina , Cromatografía Liquida , Medicamentos Herbarios Chinos , Humanos , Espectrometría de Masas en Tándem
11.
J Pharm Biomed Anal ; 92: 160-4, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24525563

RESUMEN

A simple and sensitive HPLC-MS/MS method was developed and fully validated for the simultaneous determination of amygdalin (AD) and paeoniflorin (PF) in human plasma. For both analytes, the method exhibited high sensitivity (LLOQs of 0.6ng/mL) by selecting the ammonium adduct ions ([M+NH4](+)) as the precursor ions and good linearity over the concentration range of 0.6-2000ng/mL with the correlation coefficients>0.9972. The intra- and inter-day precision was lower than 10% in relation to relative standard deviation, while accuracy was within ±2.3% in terms of relative error for both analytes. The developed method was successfully applied to a pilot pharmacokinetic study of AD and PF in healthy volunteers after intravenous infusion administration of Huoxue-Tongluo lyophilized powder for injection.


Asunto(s)
Amigdalina/sangre , Amigdalina/química , Cromatografía Liquida/métodos , Glucósidos/sangre , Glucósidos/química , Monoterpenos/sangre , Monoterpenos/química , Espectrometría de Masas en Tándem/métodos , Amigdalina/farmacocinética , Medicamentos Herbarios Chinos/química , Glucósidos/farmacocinética , Humanos , Monoterpenos/farmacocinética , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA