Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Adv Sci (Weinh) ; 11(13): e2307850, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240457

RESUMEN

Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3ß (p-GSK-3ß), thereby promoting ß-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic ß-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.


Asunto(s)
Diterpenos , Enfermedades Renales , Proteína de Unión al GTP cdc42 , Animales , Ratones , beta Catenina/efectos de los fármacos , beta Catenina/metabolismo , Fibrosis/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Riñón/metabolismo , Enfermedades Renales/tratamiento farmacológico , Wikstroemia/química , Diterpenos/farmacología , Proteína de Unión al GTP cdc42/efectos de los fármacos
2.
Phytomedicine ; 111: 154658, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706698

RESUMEN

BACKGROUND: Wumei Wan (WMW) has been used to address digestive disorder for centuries in traditional Chinese medicine. Previous studies have demonstrated its anti-colitis efficacy, but the underlying mechanism of its action remains to be further clarified. PURPOSE: To investigate the underlying mechanisms of WMW in the treatment of chronic ulcerative colitis (UC) through network pharmacology and experimental validation. METHODS: Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform were used to identify the ingredients and potential targets of WMW. The microarray gene data GSE75214 datasets from GEO database was used to define UC-associated targets. Cytoscape3.7.2 was employed to construct the protein-protein interaction (PPI) network and compounds-disease targets network. GO enrichment analysis and KEGG pathway analysis were performed by R software for functional annotation. UPLC-TOF-MS/MS method was used to quantitatively analyze the active ingredients of WMW. For experimental validation, three cycles of 2% dextran sulfate sodium salt (DSS) were used to construct chronic colitis model. The hub targets and signal pathway were detected by qPCR, ELISA, western blotting , immunohistochemical and immunofluorescence. RESULTS: Through network analysis, 104 active ingredients were obtained from WMW, and 47 of these ingredients had potential targets for UC. A total of 41 potential targets of WMW and 13 hub targets were identified. KEGG analysis showed that WMW involved in advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE) signaling pathway. Taxifolin, rutaecarpine, kaempferol, quercetin, and luteolin of WMW were the more highly predictive components related to the AGE-RAGE signaling pathway. In vivo validation, WMW improved DSS-induced colitis, reduced the expression of inflammatory cytokines and chemokines. Notably, it significantly decreased the mRNA expression of Spp1, Serpine1, Mmp2, Mmp9, Ptgs2, Nos2, Kdr and Icam1, which were associated with angiogenesis. In addition, we confirmed WMW inhibited RAGE expression and diminished DSS-induced epithelial barrier alterations CONCLUSION: Our results initially demonstrated the effective components and the strong anti-angiogenic activity of WMW in experimental chronic colitis. Sufficient evidence of the satisfactory anti-colitis action of WMW was verified in this study, suggesting its potential as a quite prospective agent for the therapy of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Humanos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Estudios Prospectivos , Transducción de Señal , Espectrometría de Masas en Tándem
3.
Pharmacol Ther ; 213: 107587, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32470470

RESUMEN

The widespread coronavirus SARS-CoV-2 has already infected over 4 million people worldwide, with a death toll over 280,000. Current treatment of COVID-19 patients relies mainly on antiviral drugs lopinavir/ritonavir, arbidol, and remdesivir, the anti-malarial drugs hydroxychloroquine and chloroquine, and traditional Chinese medicine. There are over 2,118 on-going clinical trials underway, but to date none of these drugs have consistently proven effective. Cathepsin L (CatL) is an endosomal cysteine protease. It mediates the cleavage of the S1 subunit of the coronavirus surface spike glycoprotein. This cleavage is necessary for coronavirus entry into human host cells, virus and host cell endosome membrane fusion, and viral RNA release for next round of replication. Here we summarize data regarding seven CatL-selective inhibitors that block coronavirus entry into cultured host cells and provide a mechanism to block SARS-CoV-2 infection in humans. Given the rapid growth of the SARS-CoV-2-positive population worldwide, ready-to-use CatL inhibitors should be explored as a treatment option. We identify ten US FDA-approved drugs that have CatL inhibitory activity. We provide evidence that supports the combined use of serine protease and CatL inhibitors as a possibly safer and more effective therapy than other available therapeutics to block coronavirus host cell entry and intracellular replication, without compromising the immune system.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Catepsina L/antagonistas & inhibidores , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/fisiopatología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/fisiopatología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Células Presentadoras de Antígenos/metabolismo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/administración & dosificación , Antivirales/efectos adversos , Betacoronavirus , COVID-19 , Ensayos Clínicos como Asunto/estadística & datos numéricos , Relación Dosis-Respuesta a Droga , Aprobación de Drogas , Quimioterapia Combinada , Humanos , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Medicina Tradicional China/métodos , Pandemias , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Estados Unidos , United States Food and Drug Administration
4.
Arterioscler Thromb Vasc Biol ; 39(3): 446-458, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30651000

RESUMEN

Objective- Inflammation occurs during the progression of abdominal aortic aneurysm (AAA). IL (interleukin)-33 is a pleiotropic cytokine with multiple immunomodulatory effects, yet its role in AAA remains unknown. Approach and Results- Immunoblot, immunohistochemistry, and immunofluorescent staining revealed increased IL-33 expression in adventitia fibroblasts from mouse AAA lesions. Daily intraperitoneal administration of recombinant IL-33 or transgenic IL-33 expression ameliorated periaorta CaPO4 injury- and aortic elastase exposure-induced AAA in mice, as demonstrated by blunted aortic expansion, reduced aortic wall elastica fragmentation, enhanced AAA lesion collagen deposition, attenuated T-cell and macrophage infiltration, reduced inflammatory cytokine production, skewed M2 macrophage polarization, and reduced lesion MMP (matrix metalloproteinase) expression and cell apoptosis. Flow cytometry analysis, immunostaining, and immunoblot analysis showed that exogenous IL-33 increased CD4+Foxp3+ regulatory T cells in spleens, blood, and aortas in periaorta CaPO4-treated mice. Yet, ST2 deficiency muted these IL-33 activities. Regulatory T cells from IL-33-treated mice also showed significantly stronger activities in suppressing smooth muscle cell inflammatory cytokine and chemokine expression, macrophage MMP expression, and in increasing M2 macrophage polarization than those from vehicle-treated mice. In contrast, IL-33 failed to prevent AAA and lost its beneficial activities in CaPO4-treated mice after selective depletion of regulatory T cells. Conclusions- Together, this study established a role of IL-33 in protecting mice from AAA formation by enhancing ST2-dependent aortic and systemic regulatory T-cell expansion and their immunosuppressive activities.


Asunto(s)
Aneurisma de la Aorta Abdominal/prevención & control , Interleucina-33/fisiología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Aorta/inmunología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/inmunología , Fosfatos de Calcio/toxicidad , Células Cultivadas , Citocinas/biosíntesis , Evaluación Preclínica de Medicamentos , Inyecciones Intraperitoneales , Proteína 1 Similar al Receptor de Interleucina-1/deficiencia , Proteína 1 Similar al Receptor de Interleucina-1/fisiología , Interleucina-33/genética , Interleucina-33/farmacología , Interleucina-33/uso terapéutico , Macrófagos/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Elastasa Pancreática/toxicidad , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Linfocitos T Reguladores/inmunología , Remodelación Vascular
5.
J Hypertens ; 29(3): 542-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21119529

RESUMEN

OBJECTIVE: The mineralocorticoid receptor has been implicated in the pathogenesis of chronic cardiorenal disease. Statins improve renal remodeling and dysfunction in patients with proteinuric kidney diseases. We aimed to clarify the beneficial effects and mechanisms of action of statins in renal insufficiency. METHODS AND RESULTS: Dahl salt-sensitive rats fed a high-salt diet were treated from 12 to 20 weeks of age with vehicle, the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin, the synthetic cathepsin inhibitor E64d, or a low or high dosage of pitavastatin (1 or 3 mg/kg daily). Rats fed a low-salt diet served as controls. Rats on the high-salt diet developed massive proteinuria and glomerulosclerosis; these changes were attenuated by both doses of pitavastatin. The amounts of mRNAs or proteins for mineralocorticoid receptor, angiotensin-converting enzyme, angiotensin II type 1 receptor (AT1R), monocyte chemoattractant protein-1, osteopontin, macrophage infiltration, and NADPH subunits (gp91phox, p22phox, and Rac1) were significantly higher in the failing kidneys of vehicle-treated rats than in the kidneys of control rats. Either dose of pitavastatin significantly attenuated these changes. These effects of pitavastatin were mimicked by those of apocynin and E64d. Pretreatment with pitavastatin and apocynin inhibited mRNA and protein of mineralocorticoid receptor induced by angiotensin II in cultured podocytes. CONCLUSION: The beneficial effects of pitavastatin are likely attributable, at least in part, to attenuation of the mineralocorticoid receptor-dependent inflammatory mediator, matrix protein, and cathepsin expressions induced by AT1R-mediated NADPH oxidase activation in the kidneys of a salt-induced hypertensive Dahl salt-sensitive rat model.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Riñón/efectos de los fármacos , Antagonistas de Receptores de Mineralocorticoides , Quinolinas/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Células Cultivadas , Colágeno/genética , Masculino , NADPH Oxidasas/genética , Sustancias Protectoras/farmacología , Ratas , Ratas Endogámicas Dahl , Receptor de Angiotensina Tipo 1/genética , Receptores de Mineralocorticoides/genética , Superóxidos/metabolismo
6.
Nat Med ; 15(8): 940-5, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633655

RESUMEN

Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For example, white adipose tissue (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Furthermore, in the context of mice on a Western diet, genetically induced deficiency of mast cells, or their pharmacological stabilization, reduces body weight gain and levels of inflammatory cytokines, chemokines and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer experiments of cytokine-deficient mast cells show that these cells, by producing interleukin-6 (IL-6) and interferon-gamma (IFN-gamma), contribute to mouse adipose tissue cysteine protease cathepsin expression, apoptosis and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance. Our results showing reduced obesity and diabetes in mice treated with clinically available mast cell-stabilizing agents suggest the potential of developing new therapies for these common human metabolic disorders.


Asunto(s)
Cromolin Sódico/uso terapéutico , Diabetes Mellitus Experimental/etiología , Mastocitos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/genética , Proteínas Proto-Oncogénicas c-kit/genética , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/inmunología , Dieta Aterogénica , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Masculino , Mastocitos/metabolismo , Ratones , Ratones Transgénicos , Obesidad/complicaciones , Obesidad/etiología , Obesidad/inmunología , Especificidad de Órganos/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA