Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 12: 756519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795651

RESUMEN

Increasing evidence has indicated that oxidative stress is associated with the health of infants. Bifidobacterium, especially B. longum subsp. longum strains, are abundant in the gut microbiota of infants, which may have the potential to ameliorate oxidative damage. Thus, this study aimed to isolate and screen B. longum subsp. longum strains with probiotic characters and antioxidant properties as infants' dietary supplements. In this study, 24 B. longum subsp. longum strains were isolated from 15 healthy infants identified via 16S rRNA and heat shock protein 60 (hsp60) sequences. B. longum subsp. longum B13, F2, K4, K5, K10, K13, and K15 strains were selected based on high values obtained from autoaggregation, hydrophobicity, and adhesion assays to HT-29 cells. Among these seven strains, B. longum subsp. longum F2, K5, K10, and K15 were selected according to the high tolerance of gastrointestinal tract conditions compared to Bifidobacterium animalis subsp. lactis BB-12. Among these four strains, B. longum subsp. longum K5 was susceptible to common antibiotics and showed the highest intestinal epithelial cell proliferation of CCD 841 CoN. Additionally, B. longum subsp. longum K5 showed a strong antioxidant capacity, and its supernatant exhibited better activity of reducing power, hydroxyl radical scavenging, and DPPH radical scavenging than that of the intact cells with cell-free extracts. The findings indicated that B. longum subsp. longum K5 could be used as a probiotic candidate in infant nutrition.

2.
Food Funct ; 12(11): 5130-5143, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33973599

RESUMEN

Correlations between gut microbiota activities and inflammatory bowel disease (IBD) treatment are gaining research interest. In our previous study, Lactobacillus acidophilus KLDS 1.0901, Lactobacillus helveticus KLDS 1.8701, and Lactobacillus plantarum KLDS 1.0318 showed antibacterial, antioxidant, and immunomodulatory activities. In the current study, we evaluated the effects of three tested strains and their mixture on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. The three tested strains and their mixture significantly decreased the disease activity index (DAI), colon shortening, and myeloperoxidase (MPO) activity. Additionally, the three tested strains and their mixture improved the histological damage, increased the colonic mucous layer integrity, and exhibited lower levels of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), while up-regulating colonic anti-inflammatory cytokine IL-10 levels, tight junction proteins (E-cadherin, zonulae occludens (ZO)-1, occludin and claudin-1) and mucin (MUC1 and MUC2) mRNA expressions to some extent. In addition, mixed lactobacilli showed better anti-inflammatory effects than single-strain treatment. Our study further revealed that mixed lactobacilli increased bacterial diversity and improved gut microbiota composition, increasing short-chain fatty acid (SCFA) production. These results indicated that mixed lactobacilli supplementation could attenuate DSS-induced colitis by modulating the gut microbiota and repairing the intestinal barrier, which provided a scientific basis for its clinical application in the future.


Asunto(s)
Antiinflamatorios/farmacología , Colitis/terapia , Sulfato de Dextran/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus/metabolismo , Animales , Colitis/inducido químicamente , Colitis/patología , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Intestinos , Lactobacillus plantarum/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sulfatos/efectos adversos , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
3.
Food Funct ; 11(12): 10736-10747, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231244

RESUMEN

Tryptophan is an essential amino acid for the human body, whose intake is through the diet. Several studies support the theory that microbiota-derived tryptophan metabolite played a crucial role in maintaining the balance between gut microbiota and the mucosal immune system. Previously, we selected the Lactobacillus plantarum KLDS 1.0386 strain with high tryptophan-metabolic activity after the screening of 16 Lactobacillus strains. The current study aimed to assess the effects of L. plantarum KLDS 1.0386 combination with tryptophan in improving ulcerative colitis (UC) induced by dextran sodium sulfate (DSS) and the potential mechanisms involved. Our results showed that L. plantarum KLDS 1.0386 combined with tryptophan (LAB + Trp) decreased DAI score, MPO level, and pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) concentration. It also increased anti-inflammatory cytokine (IL-10) production, tight junction proteins (claudin-1, occludin, and ZO-1), and mucin (MUC1 and MUC2) mRNA expressions. The level of indole-3-acetic acid (IAA), an important tryptophan metabolite in the liver, serum, and colon, was elevated after LAB + Trp treatment, which further upregulated aryl hydrocarbon receptor (AHR) mRNA expression to activate the IL-22/STAT3 signaling pathway. Moreover, the supplementation with LAB + Trp modulated gut microbiota composition. The present study provided novel insights that can be used to reduce the number of UC patients by employing a method utilizing tryptophan-catabolizing Lactobacillus strains.


Asunto(s)
Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Lactobacillus plantarum/fisiología , Sulfatos/efectos adversos , Triptófano/farmacología , Animales , Bacterias/clasificación , Bacterias/genética , Colitis Ulcerosa , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Triptófano/metabolismo
4.
Food Funct ; 11(5): 4571-4581, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400792

RESUMEN

Folate is an essential B vitamin and its deficiency is common in many parts of the world. Natural folate produced by microorganisms may be an alternative to chemically synthesized folic acid (FA) as a dietary supplement. Previously, two lactic acid bacteria (LAB) strains, a high folate-producing Lactococcus lactis subsp. lactis KLDS4.0325 and a weak folate-producing Lactococcus lactis subsp. lactis KLDS4.0613, were identified. The aim of this study was to evaluate the effect of milk fermented with L. lactis KLDS4.0325 (folate-enriched fermented milk, FEFM) in alleviating folate deficiency status using murine folate deficiency models. In addition, the link between gut microbiota diversity and folate levels in mice was investigated. Results showed that FEFM increased FA and 5-methyltetrahydrofolate (5-MTHF) concentrations in the whole blood and liver, and decreased plasma homocysteine (Hcy) levels. 16S rDNA sequence analysis also revealed that the supplementation of FEFM (containing 0.6 µg mL-1 folate) and 0.6 µg d-1 FA (FEFM + LFA) significantly improved the poor status of the gut microbiota composition caused by folate deficiency, and the effect was better than that with 1.2 µg d-1 FA (HFA) supplementation. Our findings show that FEFM can be used as a folate-fortified food to alleviate folate deficiency effectively. In addition, it may be considered as a partial or total replacement for synthetic FA.


Asunto(s)
Deficiencia de Ácido Fólico/dietoterapia , Ácido Fólico/sangre , Lactococcus lactis , Leche/química , Animales , Modelos Animales de Enfermedad , Femenino , Fermentación , Deficiencia de Ácido Fólico/sangre , Alimentos Funcionales , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA