Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 18(22): 4367-75, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19692351

RESUMEN

The syndrome of hypomagnesemia with secondary hypocalcemia is caused by defective TRPM6. This protein is an ion channel that also contains a kinase in its C-terminus. It is usually diagnosed in childhood and, without treatment with supplemental Mg, affected children suffer from mental retardation, seizures and retarded development. We developed a mouse lacking Trpm6 in order to understand in greater detail the function of this protein. In contrast to our expectations, Trpm6(-/-) mice almost never survived to weaning. Many mice died by embryonic day 12.5. Most that survived to term had neural tube defects consisting of both exencephaly and spina bifida occulta, an unusual combination. Feeding dams a high Mg diet marginally improved offspring survival to weaning. The few Trpm6(-/-) mice that survived were fertile but matings between Trpm6(-/-) mice produced no viable pregnancies. Trpm6(+/-) mice had normal electrolytes except for modestly low plasma [Mg]. In addition, some Trpm6(+/-) mice died prematurely. Absence of Trpm6 produces an apparently different phenotype in mice than in humans. The presence of neural tube defects identifies a previously unsuspected role of Trpm6 in effecting neural tube closure. This genetic defect produces one of very few mouse models of spina bifida occulta. These results point to a critical role of Trpm6 in development and suggest an important role in neural tube closure.


Asunto(s)
Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/mortalidad , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Magnesio/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo
2.
Sci Total Environ ; 402(1): 113-22, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-18538826

RESUMEN

A comprehensive investigation on all dissolved nitrogen and phosphorus components at both local and regional scales in the headwaters from forested watersheds is valuable to improve our understanding of the factors controlling water quality. Here, we investigated the baseflow concentrations of dissolved nitrogen and phosphorus components, N:P ratio, and their associations with region and vegetation type in forested headwaters in fives regions of Japan. We found that inorganic nitrogen and phosphorus were the dominant components in the 26 temperate forested streams, rather than organic forms. There were significant positive correlations between the concentrations of N and P components. Furthermore, the regional patterns of the concentrations of nitrate, dissolved inorganic P (DIP), and dissolved total N (DTN) and P (DTP) were similar. Our results suggest that the regional patterns of the concentrations of N and P components should be related to the regional atmospheric deposition of both N and P nutrients. We also found that the nitrate and DTN concentrations were higher in man-made evergreen conifer (EC) than those in the natural deciduous broadleaf (DB). In contrast, the DIP and DTP concentrations in EC were lower than those in DB. The uniformly higher N:P ratio in EC- than in DB-forested streams for each region suggest that EC-forested streams could be more affected by P-limited than DB-forested streams when N inputs from atmospheric sources increased.


Asunto(s)
Agua Dulce/análisis , Nitrógeno/análisis , Fósforo/análisis , Árboles , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Geografía , Japón , Nitratos/análisis , Estaciones del Año , Movimientos del Agua , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA