Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 34(8): 2157-68, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145264

RESUMEN

Chronic consumption of excessive alcohol results in reduced bone mass, impaired bone structure, and increased risk of bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are not fully understood. Here, we show that high dose chronic alcohol consumption reduces osteogenic differentiation and enhances adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), leading to osteopenia in a mouse model. Mechanistically, impaired osteo/adipogenic lineage differentiation of BMMSCs is due to activation of a phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (mTOR) signaling cascade, resulting in downregulation of runt-related transcription factor 2 and upregulation of peroxisome proliferator-activated receptor gamma via activation of p70 ribosomal protein S6 kinase. Blockage of the mTOR pathway by rapamycin treatment ameliorates alcohol-induced osteopenia by rescuing impaired osteo/adipogenic lineage differentiation of BMMSCs. In this study, we identify a previously unknown mechanism by which alcohol impairs BMMSC lineage differentiation and reveal a potential rapamycin-based drug therapy for alcohol-induced osteoporosis. Stem Cells 2016;34:2157-2168.


Asunto(s)
Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/metabolismo , Células de la Médula Ósea/patología , Etanol/efectos adversos , Células Madre Mesenquimatosas/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Células de la Médula Ósea/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Femenino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Desnudos , Fenotipo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
2.
Stem Cell Res Ther ; 7: 33, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26895633

RESUMEN

BACKGROUND: Periodontitis, which progressively destroys tooth-supporting structures, is one of the most widespread infectious diseases and the leading cause of tooth loss in adults. Evidence from preclinical trials and small-scale pilot clinical studies indicates that stem cells derived from periodontal ligament tissues are a promising therapy for the regeneration of lost/damaged periodontal tissue. This study assessed the safety and feasibility of using autologous periodontal ligament stem cells (PDLSCs) as an adjuvant to grafting materials in guided tissue regeneration (GTR) to treat periodontal intrabony defects. Our data provide primary clinical evidence for the efficacy of cell transplantation in regenerative dentistry. METHODS: We conducted a single-center, randomized trial that used autologous PDLSCs in combination with bovine-derived bone mineral materials to treat periodontal intrabony defects. Enrolled patients were randomly assigned to either the Cell group (treatment with GTR and PDLSC sheets in combination with Bio-oss(®)) or the Control group (treatment with GTR and Bio-oss(®) without stem cells). During a 12-month follow-up study, we evaluated the frequency and extent of adverse events. For the assessment of treatment efficacy, the primary outcome was based on the magnitude of alveolar bone regeneration following the surgical procedure. RESULTS: A total of 30 periodontitis patients aged 18 to 65 years (48 testing teeth with periodontal intrabony defects) who satisfied our inclusion and exclusion criteria were enrolled in the study and randomly assigned to the Cell group or the Control group. A total of 21 teeth were treated in the Control group and 20 teeth were treated in the Cell group. All patients received surgery and a clinical evaluation. No clinical safety problems that could be attributed to the investigational PDLSCs were identified. Each group showed a significant increase in the alveolar bone height (decrease in the bone-defect depth) over time (p < 0.001). However, no statistically significant differences were detected between the Cell group and the Control group (p > 0.05). CONCLUSIONS: This study demonstrates that using autologous PDLSCs to treat periodontal intrabony defects is safe and does not produce significant adverse effects. The efficacy of cell-based periodontal therapy requires further validation by multicenter, randomized controlled studies with an increased sample size. TRIAL REGISTRATION: NCT01357785 Date registered: 18 May 2011.


Asunto(s)
Enfermedades Maxilomandibulares/terapia , Periodontitis/terapia , Trasplante de Células Madre , Alveolo Dental/patología , Adolescente , Adulto , Células Madre Adultas/fisiología , Anciano , Regeneración Ósea , Células Cultivadas , Femenino , Humanos , Enfermedades Maxilomandibulares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Ligamento Periodontal/patología , Periodontitis/diagnóstico por imagen , Radiografía , Medicina Regenerativa , Alveolo Dental/diagnóstico por imagen , Trasplante Autólogo , Resultado del Tratamiento , Adulto Joven
3.
Tissue Eng Part A ; 14(12): 2051-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18636949

RESUMEN

Dental caries remains one of the most prevalent infectious diseases in the world. So far, available treatment methods rely on the replacement of decayed soft and mineralized tissue with inert biomaterials alone. As an approach to develop novel regenerative strategies and engineer dental tissues, two dental stem cell lines were combined with peptide-amphiphile (PA) hydrogel scaffolds. PAs self-assemble into three-dimensional networks of nanofibers, and living cells can be encapsulated. Cell-matrix interactions were tailored by incorporation of the cell adhesion sequence RGD and an enzyme-cleavable site. SHED (stem cells from human exfoliated deciduous teeth) and DPSC (dental pulp stem cells) were cultured in PA hydrogels for 4 weeks using different osteogenic supplements. Both cell lines proliferate and differentiate within the hydrogels. Histologic analysis shows degradation of the gels and extracellular matrix production. However, distinct differences between the two cell lines can be observed. SHED show a spindle-shaped morphology, high proliferation rates, and collagen production, resulting in soft tissue formation. In contrast, DPSC reduce proliferation, but exhibit an osteoblast-like phenotype, express osteoblast marker genes, and deposit mineral. Since the hydrogels are easy to handle and can be introduced into small defects, this novel system might be suitable for engineering both soft and mineralized matrices for dental tissue regeneration.


Asunto(s)
Pulpa Dental/citología , Nanoestructuras , Péptidos/metabolismo , Células Madre/metabolismo , Andamios del Tejido , Adulto , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Dexametasona/farmacología , Perfilación de la Expresión Génica , Glicerofosfatos/farmacología , Humanos , Péptidos/química , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/ultraestructura
4.
J Bone Miner Res ; 18(4): 716-22, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12674332

RESUMEN

Telomerase activity can prevent telomere shortening and replicative senescence in human somatic cells. We and others have previously demonstrated that forced expression of telomerase in human bone marrow stromal stem cells (BMSSCs) was able to extend their life-span and enhance their bone-forming capability, without inducing malignant transformation. In this study, we determined that telomerase was able to accelerate calcium accumulation of human BMSSCs under osteogenic inductive conditions. Similarly, xenogeneic transplantation of telomerase-expressing BMSSCs (BMSSC-Ts) yielded ectopic bone formation at 2 weeks post-transplantation, 2-4 weeks earlier than typically seen with BMSSCs transfected with empty vector (BMSSC-Cs). Low-density DNA array analysis revealed that telomerase activity increases the expression of G1 regulating genes including cyclin D3, cyclin E1, E2F-4, and DP2, associated with hyperphosphorylation of retinoblastoma (pRb), leading to the extended proliferative capacity of BMSSC-Ts. Importantly, BMSSC-T transplants showed a higher number of human osteogenic cells at 8 weeks post transplantation compared with the BMSSC-C transplants, coupled with a significantly increased osteogenic capacity. One possible mechanism leading to accelerated osteogenesis by BMSSC-Ts may be attributed, at least in part, to the upregulation of the important osteogenic genes such as CBFA1, osterix, and osteocalcin in vitro. Taken together, these findings show that telomerase can accelerate cell cycle progression from G1-to-S phase and enhance osteogenic differentiation of BMSSCs, because of the upregulation of CBFA1, osterix, and osteocalcin.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Proteínas de Neoplasias , Osteocalcina/genética , Osteogénesis/genética , Osteogénesis/fisiología , Telomerasa/fisiología , Factores de Transcripción/genética , Elementos Alu , Animales , Secuencia de Bases , División Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal , ADN Complementario/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Hibridación in Situ , Ratones , Factor de Transcripción Sp7 , Células del Estroma/citología , Células del Estroma/metabolismo , Trasplante Heterólogo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA