Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mov Sci ; 76: 102770, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33636570

RESUMEN

This study investigated if training in a virtual reality (VR) environment that provides visual and audio biofeedback on foot placement can induce changes to spatial and temporal parameters of gait during overground walking. Eighteen healthy young adults walked for 23 min back and forth on an instrumented walkway in three different conditions: (i) real environment (RE), (ii) virtual environment (VE) with no biofeedback, and (iii) VE with biofeedback. Visual and audio biofeedback while stepping on virtual footprint targets appearing along a straight path encouraged participants to walk with an asymmetrical step length (SL). A repeated-measures, one-way ANOVA, followed by a pairwise comparison post-hoc analysis with Bonferroni's correction, was performed to compare the step length difference (SLD), stance phase percentage difference (SPPD), and double-support percentage difference (DSPD) between early and late phases of all walking conditions. The results demonstrate the efficacy of the VE biofeedback system for training asymmetrical gait patterns. Participants temporarily adapted an asymmetrical gait pattern immediately post-training in the VE. Induced asymmetries persisted significantly while later walking in the RE. Asymmetry was significant in the spatial parameters of gait (SLD) but not in the temporal parameters (SPPD and DSPD). This paper demonstrates a method to induce unilateral changes in spatial parameters of gait using a novel VR tool. This study provides a proof-of-concept validation that VR biofeedback training can be conducted directly overground and could potentially provide a new method for treatment of hemiplegic gait or asymmetrical walking.


Asunto(s)
Adaptación Fisiológica , Prueba de Esfuerzo/métodos , Marcha/fisiología , Realidad Virtual , Caminata/fisiología , Adulto , Biorretroalimentación Psicológica , Terapia por Ejercicio , Femenino , Hemiplejía/fisiopatología , Humanos , Masculino , Adulto Joven
2.
J Neuroeng Rehabil ; 17(1): 121, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883297

RESUMEN

BACKGROUND: Neuromuscular Electrical Stimulation (NMES) has been utilized for many years in cerebral palsy (CP) with limited success despite its inherent potential for improving muscle size and/or strength, inhibiting or reducing spasticity, and enhancing motor performance during functional activities such as gait. While surface NMES has been shown to successfully improve foot drop in CP and stroke, correction of more complex gait abnormalities in CP such as flexed knee (crouch) gait remains challenging due to the level of stimulation needed for the quadriceps muscles that must be balanced with patient tolerability and the ability to deliver NMES assistance at precise times within a gait cycle. METHODS: This paper outlines the design and evaluation of a custom, noninvasive NMES system that can trigger and adjust electrical stimulation in real-time. Further, this study demonstrates feasibility of one possible application for this digitally-controlled NMES system as a component of a pediatric robotic exoskeleton to provide on-demand stimulation to leg muscles within specific phases of the gait cycle for those with CP and other neurological disorders who still have lower limb sensation and volitional control. A graphical user interface was developed to digitally set stimulation parameters (amplitude, pulse width, and frequency), timing, and intensity during walking. Benchtop testing characterized system delay and power output. System performance was investigated during a single session that consisted of four overground walking conditions in a 15-year-old male with bilateral spastic CP, GMFCS Level III: (1) his current Ankle-Foot Orthosis (AFO); (2) unassisted Exoskeleton; (3) NMES of the vastus lateralis; and (4) NMES of the vastus lateralis and rectus femoris. We hypothesized in this participant with crouch gait that NMES triggered with low latency to knee extensor muscles during stance would have a modest but positive effect on knee extension during stance. RESULTS: The system delivers four channels of NMES with average delays of 16.5 ± 13.5 ms. Walking results show NMES to the vastus lateralis and rectus femoris during stance immediately improved mean peak knee extension during mid-stance (p = 0.003*) and total knee excursion (p = 0.009*) in the more affected leg. The electrical design, microcontroller software and graphical user interface developed here are included as open source material to facilitate additional research into digitally-controlled surface stimulation ( github.com/NIHFAB/NMES ). CONCLUSIONS: The custom, digitally-controlled NMES system can reliably trigger electrical stimulation with low latency. Precisely timed delivery of electrical stimulation to the quadriceps is a promising treatment for crouch. Our ultimate goal is to synchronize NMES with robotic knee extension assistance to create a hybrid NMES-exoskeleton device for gait rehabilitation in children with flexed knee gait from CP as well as from other pediatric disorders. TRIAL REGISTRATION: clinicaltrials.gov, ID: NCT01961557 . Registered 11 October 2013; Last Updated 27 January 2020.


Asunto(s)
Parálisis Cerebral/rehabilitación , Terapia por Estimulación Eléctrica/instrumentación , Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha/rehabilitación , Diseño de Prótesis , Adolescente , Parálisis Cerebral/complicaciones , Trastornos Neurológicos de la Marcha/etiología , Humanos , Articulación de la Rodilla/fisiopatología , Masculino , Espasticidad Muscular/fisiopatología
3.
Gait Posture ; 80: 174-177, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32521471

RESUMEN

BACKGROUND: The inability to adjust step length can lead to falls in older people when navigating everyday terrain. Precisely targeted forward placement of the leading foot, constituting step length adjustment, is required for adaptive gait control, but this ability may reduce with ageing. The objective of this study was to investigate ageing effects on step length adaptation using real-time biofeedback. RESEARCH QUESTION: Does ageing affect the ability to adapt step length to match a target using real-time biofeedback? METHODS: Fifteen older adults (67 ± 3 years; 8 females) and 27 young adults (24 ± 4 years; 13 females) completed a step length adaptation test while walking at preferred speed on a treadmill. The test involved walking while viewing a monitor at the front of the treadmill that showed a real-time signal of absolute left-right foot displacement. The task was to match the local maxima of the signal (i.e. step length) to two target conditions, at 10 % longer or 10 % shorter than mean baseline step length. When the target was displayed, it remained unchanged for a set of 10 consecutive step attempts. Three sets of 10 attempts for each target condition were allocated in random order, for a total of 30 step attempts per target. Average absolute error and average error (bias) of step length accuracy was computed for each target condition and compared between groups. RESULTS: The step adaptation test identified that older adults had greater mean absolute error for both short and long step targets and showed a step length-dependent bias significantly different to the young. SIGNIFICANCE: Real-time foot position feedback could be a useful tool to train and evaluate step adaptation in older people.


Asunto(s)
Adaptación Fisiológica , Factores de Edad , Análisis de la Marcha , Caminata , Accidentes por Caídas , Adulto , Anciano , Biorretroalimentación Psicológica , Fenómenos Biomecánicos , Prueba de Esfuerzo , Femenino , Pie , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA