Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 126: 155226, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387276

RESUMEN

BACKGROUND: Chronic inflammation brought on by oxidative stress can result in several immunopathologies. Natural compounds with antioxidant characteristics, like quercetin, have shown effectiveness in reducing oxidative damage and regulating the immune response. PURPOSE: The commonly used food additive monosodium glutamate (M) causes immunosuppression by disrupting redox equilibrium and inducing oxidative stress. The goal of this work is to examine the therapeutic potential of quercetin against immunotoxicity brought on by M, revealing the molecular route implicated in such immunopathology by targeting the thymus and spleen, to support the development of future anti-inflammatory and antioxidant therapies. STUDY DESIGN AND METHODS: M-fed rats were employed as an immunotoxicity model and were supplemented with quercetin for four weeks. Hematological and biochemical parameters were measured; H&E staining, immunohistochemistry, flow cytometry, real-time quantitative PCR, and western blotting were performed. RESULTS: Based on the findings, TLR4 was activated by M to cause oxidative stress-mediated inflammation, which was alleviated by the supplementation of quercetin by modulating redox homeostasis to neutralize free radicals and suppress the inflammatory response. To prevent M-induced inflammation, quercetin demonstrated anti-inflammatory functions by blocking NF-kB activation, lowering the production of pro-inflammatory cytokines, and increasing the release of anti-inflammatory cytokines. By normalizing lipid profiles and lowering the potential risk of immunological deficiency caused by M, quercetin also improves lipid metabolism. Additionally, it has shown potential for modifying insulin levels, suggesting a possible function in controlling M-induced alteration in glucose metabolism. The addition of quercetin to M enhanced the immune response by improving immunoglobulin levels and CD4/CD8 expression in the thymus and spleen. Additionally, quercetin inhibited apoptosis by controlling mitochondrial caspase-mediated cellular signaling, suggesting that it may be able to halt cell death in M-fed rats. CONCLUSION: The results of this study first indicate that quercetin, via modulating redox-guided cellular signaling, has a promising role in reducing immune disturbances. This study illuminates the potential of quercetin as a safe, natural remedy for immunopathology caused by M, including thymic hypoplasia and/or splenomegaly, and paves the way for future anti-inflammatory and antioxidant supplements.


Asunto(s)
Antioxidantes , Quercetina , Ratas , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Antioxidantes/metabolismo , Glutamato de Sodio/metabolismo , Glutamato de Sodio/farmacología , Glutamato de Sodio/uso terapéutico , Bazo , Oxidación-Reducción , Estrés Oxidativo , Inflamación/metabolismo , Terapia de Inmunosupresión , Antiinflamatorios/farmacología , Citocinas/metabolismo
2.
Open Life Sci ; 18(1): 20220718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37772260

RESUMEN

It is essential to revisit the global biodiversity, search for ethnopharmacologically relevant plants, and unveil their untapped potential to overcome the complications associated while treating infections triggered by multiple antibiotic-resistant Staphylococcus aureus. Catharanthus roseus (L.) G. Don of the Apocynaceae family is a medicinal plant used for remedial purposes against infectious diseases from ancient times. In this study, we intended to evaluate the mechanism by which the ethanolic extract of C. roseus root (EECRR) causes the reversal of ampicillin resistance in S. aureus. To achieve this goal, we have stained EECRR-treated S. aureus with acridine orange, analysed DNA damage by comet assay, and studied the alteration of plasmid band pattern and expression of penicillin-binding protein 2a (PBP2a) protein. Experiments revealed better S. aureus killing efficiency of EECRR at its minimum inhibitory concentration (MIC) doses due to DNA damage and reducing plasmid band intensities along with a decline in the expression of PBP2a in EECRR-treated cells at half-MIC dose. EECRR proved to be an efficient growth inhibitor of S. aureus that reduces the expression of PBP2a. Therefore, EECRR can also render ampicillin-resistant S. aureus susceptible to the antibiotic.

3.
J Diet Suppl ; 19(4): 459-482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33729080

RESUMEN

Green tea extract (GTE) improves exercise outcomes and reduces obesity. However, case studies indicate contradictory physiology regarding liver function and toxicity. We studied the effect of two different decaffeinated GTE (dGTE) products, from a non-commercial (dGTE1) and commercial (dGTE2) supplier, on hepatocyte function using the human cell model, HepG2. dGTE1 was protective against hydrogen peroxide (H2O2)-induced apoptosis and cell death by attenuating oxidative stress pathways. Conversely, dGTE2 increased cellular and mitochondrial oxidative stress and apoptosis. A bioavailability study with dGTE showed the major catechin in GTE, EGCG, reached 0.263 µg·ml-1. In vitro, at this concentration, EGCG mimicked the protective effect of dGTE1. GC/MS analysis identified steric acid and higher levels of palmitic acid in dGTE2 versus dGTE1 supplements. We demonstrate the significant biological differences between two GTE supplements which may have potential implications for manufacturers and consumers to be aware of the biological effects of supplementation.


Asunto(s)
Catequina , , Antioxidantes/farmacología , Catequina/farmacología , Supervivencia Celular , Suplementos Dietéticos , Células Hep G2 , Humanos , Peróxido de Hidrógeno , Mitocondrias , Estrés Oxidativo , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA