Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroscience ; 297: 160-9, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25849615

RESUMEN

Trigeminal ganglia (TG) contain neuronal cell bodies surrounded by satellite glial cells. Although peripheral injury is well known to induce changes in gene expression within sensory ganglia, detailed mechanisms whereby peripheral injury leads to gene expression within sensory ganglia are not completely understood. Reactive oxygen species (ROS) are an important modulator of hyperalgesia, but the role of ROS generated within sensory ganglia is unclear. Since ROS are known to affect transcription processes, ROS generated within sensory ganglia could directly influence gene expression and induce cellular changes at the soma level. In this study, we hypothesized that peripheral inflammation leads to cytokine and chemokine production and ROS generation within TG and that transient receptor potential melastatin (TRPM2), a well known oxidative sensor, contributes to ROS-induced gene regulation within TG. The masseter injection of complete Freund's adjuvant (CFA) resulted in a significantly elevated level of ROS within TG of the inflamed side with a concurrent increase in cytokine expression in TG. Treatment of TG cultures with H2O2 significantly up-regulated mRNA and protein levels of cytokine/chemokine such as interleukin 6 (IL-6) and chemokine (C-X-C motif) ligand 2 (CXCL2). TRPM2 was expressed in both neurons and non-neuronal cells in TG, and pretreatment of TG cultures with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of TRPM2, or siRNA against TRPM2 attenuated H2O2-induced up-regulation of IL-6 and CXCL2. These results suggested that activation of TRPM2 could play an important role in the modulation of cytokine/chemokine expression within TG under oxidative stress and that such changes may contribute to amplification of nociceptive signals leading to pathological pain conditions.


Asunto(s)
Citocinas/metabolismo , Peróxido de Hidrógeno/farmacología , Inflamación/metabolismo , Oxidantes/farmacología , Canales Catiónicos TRPM/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Animales , Compuestos de Boro/uso terapéutico , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Adyuvante de Freund/toxicidad , Lateralidad Funcional , Inflamación/inducido químicamente , Masculino , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Ganglio del Trigémino/citología
2.
Cell Death Dis ; 4: e820, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24091663

RESUMEN

Oxidative stress contributes to dysfunction of glial cells in the optic nerve head (ONH). However, the biological basis of the precise functional role of mitochondria in this dysfunction is not fully understood. Coenzyme Q10 (CoQ10), an essential cofactor of the electron transport chain and a potent antioxidant, acts by scavenging reactive oxygen species (ROS) for protecting neuronal cells against oxidative stress in many neurodegenerative diseases. Here, we tested whether hydrogen peroxide (100 µM H2O2)-induced oxidative stress alters the mitochondrial network, oxidative phosphorylation (OXPHOS) complex (Cx) expression and bioenergetics, as well as whether CoQ10 can ameliorate oxidative stress-mediated alterations in mitochondria of the ONH astrocytes in vitro. Oxidative stress triggered the activation of ONH astrocytes and the upregulation of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) protein expression in the ONH astrocytes. In contrast, CoQ10 not only prevented activation of ONH astrocytes but also significantly decreased SOD2 and HO-1 protein expression in the ONH astrocytes against oxidative stress. Further, CoQ10 prevented a significant loss of mitochondrial mass by increasing mitochondrial number and volume density and by preserving mitochondrial cristae structure, as well as promoted mitofilin and peroxisome-proliferator-activated receptor-γ coactivator-1 protein expression in the ONH astrocyte, suggesting an induction of mitochondrial biogenesis. Finally, oxidative stress triggered the upregulation of OXPHOS Cx protein expression, as well as reduction of cellular adeonsine triphosphate (ATP) production and increase of ROS generation in the ONH astocytes. However, CoQ10 preserved OXPHOS protein expression and cellular ATP production, as well as decreased ROS generation in the ONH astrocytes. On the basis of these observations, we suggest that oxidative stress-mediated mitochondrial dysfunction or alteration may be an important pathophysiological mechanism in the dysfunction of ONH astrocytes. CoQ10 may provide new therapeutic potentials and strategies for protecting ONH astrocytes against oxidative stress-mediated mitochondrial dysfunction or alteration in glaucoma and other optic neuropathies.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Metabolismo Energético/efectos de los fármacos , Mitocondrias/metabolismo , Disco Óptico/patología , Estrés Oxidativo/efectos de los fármacos , Ubiquinona/análogos & derivados , Animales , Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Células Cultivadas , Femenino , Procesamiento de Imagen Asistido por Computador , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Recambio Mitocondrial/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA