Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 58(14): 8995-9003, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247811

RESUMEN

Recently, we reported on a series of aminomethylene-phosphonate (AMP) analogues, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, we explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, we first characterized the Cu(II) complex with AMP-(Im)2 by ultraviolet-visible spectroscopy and electrochemical measurements that indicated the high chemical and electrochemical stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 molecule yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K' = 15.55), and log ß' = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by X-ray crystallography, indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed one-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, respectively. Indeed, 4 was found to be a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. Circular dichroism data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.


Asunto(s)
Cobre/química , Isoxazoles/química , Priones/química , Tetrazoles/química , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
2.
J Am Chem Soc ; 132(2): 517-23, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20014850

RESUMEN

A ruthenium(II) bipyridine complex with proximal phenylselenium tethers, [Ru](H(2)O)(2), reacted intramolecularly with O(2) in a protic slightly acidic solvent, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), to yield an O-O bond cleaved product, [Ru](O)(2), with formation of two Ru-O-Se moieties. This stable compound was isolated, and its structure was determined by X-ray diffraction. The identification of the compound in solution was confirmed by ESI-MS and the (1)H NMR with the associated Curie plot that showed that [Ru](O)(2) was paramagnetic. The magnetic susceptibility was 2.8 mu(B) by Evan's method suggesting a ground state triplet or biradical. DFT calculations, however, predicted a ground state singlet and an oxidized Se atom. Further it was shown that [Ru](O)(2) is a potent oxygen transfer species of both O(2)-derived atoms to triphenylphosphine and a nucleophilic alkene such as 2,3-dimethyl-2-butene in both HFIP and acetonitrile. UV-vis spectroscopy combined with the measured stoichiometry of PPh(3):O(2) = approximately 2 in a catalytic oxidation of PPh(3) suggests a dioxygenase type activation of O(2) with structural identification of the O-O bond cleavage reaction step, formation of [Ru](O)(2) as an intermediate, and the proof that [Ru](O)(2) is a donor of both oxygen atoms.


Asunto(s)
Dioxigenasas/metabolismo , Compuestos Organometálicos/química , Oxígeno/metabolismo , Piridinas/química , Rutenio/química , Selenio/química , Sitios de Unión , Cristalografía por Rayos X , Dioxigenasas/química , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxígeno/química
3.
Protein Sci ; 18(1): 196-205, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19177363

RESUMEN

Alliinase, an enzyme found in garlic, catalyzes the synthesis of the well-known chemically and therapeutically active compound allicin (diallyl thiosulfinate). The enzyme is a homodimeric glycoprotein that belongs to the fold-type I family of pyridoxal-5'-phosphate-dependent enzymes. There are 10 cysteine residues per alliinase monomer, eight of which form four disulfide bridges and two are free thiols. Cys368 and Cys376 form a S--S bridge located near the C-terminal and plays an important role in maintaining both the rigidity of the catalytic domain and the substrate-cofactor relative orientation. We demonstrated here that the chemical modification of allinase with the colored --SH reagent N-(4-dimethylamino-3,5-dinitrophenyl) maleimide yielded chromophore-bearing peptides and showed that the Cys220 and Cys350 thiol groups are accesible in solution. Moreover, electron paramagnetic resonance kinetic measurements using disulfide containing a stable nitroxyl biradical showed that the accessibilities of the two --SH groups in Cys220 and Cys350 differ. Neither enzyme activity nor protein structure (measured by circular dichroism) were affected by the chemical modification of the free thiols, indicating that alliinase activity does not require free --SH groups. This allowed the oriented conjugation of alliinase, via the --SH groups, with low- or high-molecular-weight molecules as we showed here. Modification of the alliinase thiols with biotin and their subsequent binding to immobilized streptavidin enabled the efficient enzymatic production of allicin.


Asunto(s)
Liasas de Carbono-Azufre/química , Disulfuros/química , Ajo/enzimología , Compuestos de Sulfhidrilo/química , Biotina/metabolismo , Liasas de Carbono-Azufre/aislamiento & purificación , Liasas de Carbono-Azufre/metabolismo , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Inmovilizadas/metabolismo , Indicadores y Reactivos/metabolismo , Maleimidas/metabolismo , Modelos Moleculares , Homología de Secuencia de Aminoácido , Estreptavidina/metabolismo , Compuestos de Sulfhidrilo/metabolismo
4.
J Mol Biol ; 366(2): 611-25, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17174334

RESUMEN

Alliinase (alliin lyase EC 4.4.1.4), a PLP-dependent alpha, beta-eliminating lyase, constitutes one of the major protein components of garlic (Alliium sativum L.) bulbs. The enzyme is a homodimeric glycoprotein and catalyzes the conversion of a specific non-protein sulfur-containing amino acid alliin ((+S)-allyl-L-cysteine sulfoxide) to allicin (diallyl thiosulfinate, the well known biologically active component of freshly crushed garlic), pyruvate and ammonia. The enzyme was crystallized in the presence of (+S)-allyl-L-cysteine, forming dendrite-like monoclinic crystals. In addition, intentionally produced apo-enzyme was crystallized in tetragonal form. These structures of alliinase with associated glycans were resolved to 1.4 A and 1.61 A by molecular replacement. Branched hexasaccharide chains N-linked to Asn146 and trisaccharide chains N-linked to Asn328 are seen. The structure of hexasaccharide was found similar to "short chain complex vacuole type" oligosaccharide most commonly seen in plant glycoproteins. An unexpected state of the enzyme active site has been observed in the present structure. The electron density in the region of the cofactor made it possible to identify the cofactor moiety as aminoacrylate intermediate covalently bound to the PLP cofactor. It was found in the present structure to be stabilized by large number of interactions with surrounding protein residues. Moreover, the existence of the expected internal aldimine bond between the epsilon-amino group of Lys251 and the aldehyde of the PLP is ruled out on the basis of a distinct separation of electron density of Lys251. The structure of the active site cavity in the apo-form is nearly identical to that seen in the holo-form, with two sulfate ions, an acetate and several water molecules from crystallization conditions that replace and mimic the PLP cofactor.


Asunto(s)
Apoenzimas/química , Liasas de Carbono-Azufre/química , Ajo/enzimología , Estructura Terciaria de Proteína , Sitios de Unión , Liasas de Carbono-Azufre/metabolismo , Dimerización , Ajo/química , Glicosilación , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Plantas Medicinales/química , Plantas Medicinales/enzimología , Relación Estructura-Actividad
5.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 8): 1335-7, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12136147

RESUMEN

The enzyme alliinase has been isolated from garlic bulbs and crystallized. The crystals belong to space group P2(1), with unit-cell parameters a = 70.191, b = 127.006, c = 108.085 A, beta = 93.384 degrees. They diffract to 2.2 A at liquid-nitrogen temperature. Analysis of the Patterson self-rotation function suggests that the crystals contain two dimeric molecules per asymmetric unit.


Asunto(s)
Liasas de Carbono-Azufre/química , Ajo/enzimología , Liasas de Carbono-Azufre/aislamiento & purificación , Cristalización , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA