Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901885

RESUMEN

In recent years, the use of botanical agents to prevent skin damage from solar ultraviolet (UV) irradiation has received considerable attention. Oenanthe javanica is known to exert anti-inflammatory and antioxidant activities. This study investigated photoprotective properties of an Oenanthe javanica extract (OJE) against UVB-induced skin damage in ICR mice. The extent of skin damage was evaluated in three groups: control mice with no UVB, UVB-exposed mice treated with vehicle (saline), and UVB-exposed mice treated with 1% extract. Photoprotective properties were assessed in the dorsal skin using hematoxylin and eosin staining, Masson trichrome staining, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blotting to analyze the epidermal thickness, collagen expression, and mRNA and protein levels of type I collagen, type III collagen, and interstitial collagenases, including matrix metalloproteinase (MMP)-1 and MMP-3. In addition, tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 protein levels were also assessed. In the UVB-exposed mice treated with extract, UV-induced epidermal damage was significantly ameliorated. In this group, productions of collagen types I and III were increased, and expressions of MMP-1 and MMP-3 were decreased. In addition, TNF-α and COX-2 expressions were reduced. Based on these findings, we conclude that OJE displays photoprotective effects against UVB-induced collagen disruption and inflammation and suggest that Oenanthe javanica can be used as a natural product for the treatment of photodamaged skin.


Asunto(s)
Colágeno/metabolismo , Oenanthe/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Biomarcadores , Biopsia , Dermatitis/tratamiento farmacológico , Dermatitis/etiología , Dermatitis/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Inmunohistoquímica/métodos , Ratones , Extractos Vegetales/química , Sustancias Protectoras/química
2.
Chin Med J (Engl) ; 131(6): 689-695, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29521292

RESUMEN

BACKGROUND: Glehnia littoralis has been used for traditional Asian medicine, which has diverse therapeutic activities. However, studies regarding neurogenic effects of G. littoralis have not yet been considered. Therefore, in this study, we examined effects of G. littoralis extract on cell proliferation, neuroblast differentiation, and the maturation of newborn neurons in the hippocampus of adult mice. METHODS: A total of 39 male ICR mice (12 weeks old) were randomly assigned to vehicle-treated and 100 and 200 mg/kg G. littoralis extract-treated groups (n = 13 in each group). Vehicle and G. littoralis extract were orally administrated for 28 days. To examine neurogenic effects of G. littoralis extract, we performed immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU, an indicator for cell proliferation) and doublecortin (DCX, an immature neuronal marker) and double immunofluorescence staining for BrdU and neuronal nuclear antigen (NeuN, a mature neuronal marker). In addition, we examined expressional changes of brain-derived neurotrophic factor (BDNF) and its major receptor tropomyosin-related kinase B (TrkB) using Western blotting analysis. RESULTS: Treatment with 200 mg/kg, not 100 mg/kg, significantly increased number of BrdU-immunoreactive (+) and DCX+ cells (48.0 ± 3.1 and 72.0 ± 3.8 cells/section, respectively) in the subgranular zone (SGZ) of the dentate gyrus (DG) and BrdU+/NeuN+ cells (17.0 ± 1.5 cells/section) in the granule cell layer as well as in the SGZ. In addition, protein levels of BDNF and TrkB (about 232% and 244% of the vehicle-treated group, respectively) were significantly increased in the DG of the mice treated with 200 mg/kg of G. littoralis extract. CONCLUSION: G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.


Asunto(s)
Apiaceae/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Giro Dentado/citología , Extractos Vegetales/farmacología , Receptor trkB/metabolismo , Animales , Western Blotting , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Hipocampo/citología , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/efectos de los fármacos , Neuropéptidos/metabolismo
3.
Chin Med J (Engl) ; 130(15): 1796-1803, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28748852

RESUMEN

BACKGROUND: Glehnia littoralis, as a traditional herbal medicine to heal various health ailments in East Asia, displays various therapeutic properties including antioxidant effects. However, neuroprotective effects of G. littoralis against cerebral ischemic insults have not yet been addressed. Therefore, in this study, we first examined its neuroprotective effects in the hippocampus using a gerbil model of transient global cerebral ischemia (TGCI). METHODS: Gerbils were subjected to TGCI for 5 min. G. littoralis extract (GLE; 100 and 200 mg/kg) was administrated orally once daily for 7 days before ischemic surgery. Neuroprotection was examined by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. Gliosis was observed by immunohistochemistry for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1. For neuroprotective mechanisms, immunohistochemistry for superoxide dismutase (SOD) 1 and brain-derived neurotrophic factor (BDNF) was done. RESULTS: Pretreatment with 200 mg/kg of GLE protected pyramidal neurons in the cornu ammonis 1 (CA1) area from ischemic insult area (F = 29.770, P < 0.05) and significantly inhibited activations of astrocytes (F = 22.959, P < 0.05) and microglia (F = 44.135, P < 0.05) in the ischemic CA1 area. In addition, pretreatment with GLE significantly increased expressions of SOD1 (F = 28.561, P < 0.05) and BDNF (F = 55.298, P < 0.05) in CA1 pyramidal neurons of the sham- and ischemia-operated groups. CONCLUSIONS: Our findings indicate that pretreatment with GLE can protect neurons from ischemic insults, and we suggest that its neuroprotective mechanism may be closely associated with increases of SOD1 and BDNF expressions as well as attenuation of glial activation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Extractos Vegetales/farmacología , Superóxido Dismutasa/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Gerbillinae , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Inmunohistoquímica , Superóxido Dismutasa/genética
4.
Mol Med Rep ; 16(1): 133-142, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28534982

RESUMEN

Chrysanthemum indicum Linné extract (CIL) is used in herbal medicine in East Asia. In the present study, gerbils were orally pre­treated with CIL, and changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal CA1 region following 5 min of transient cerebral ischemia were investigated and the neuroprotective effect of CIL in the ischemic CA1 region was examined. SOD1, SOD2, CAT and GPX immunoreactivities were observed in the pyramidal cells of the CA1 region and their immunoreactivities were gradually decreased following ischemia­reperfusion and barely detectable at 5 days post­ischemia. CIL pre­treatment significantly increased immunoreactivities of SOD1, CAT and GPX, but not SOD2, in the CA1 pyramidal cells of the sham­operated animals. In addition, SOD1, SOD2, CAT and GPX immunoreactivities in the CA1 pyramidal cells were significantly higher compared with the ischemia­operated animals. Furthermore, it was identified that pre­treatment with CIL protected the CA1 pyramidal cells in the CA1 region using neuronal nuclei immunohistochemistry and Fluoro­Jade B histofluorescence staining; the protected CA1 pyramidal cells were 67.5% compared with the sham­operated animals. In conclusion, oral CIL pre­treatment increased endogenous antioxidant enzymes in CA1 pyramidal cells in the gerbil hippocampus and protected the cells from transient cerebral ischemic insult. This finding suggested that CIL is promising for the prevention of ischemia­induced neuronal damage.


Asunto(s)
Antioxidantes/metabolismo , Región CA1 Hipocampal/metabolismo , Chrysanthemum/química , Ataque Isquémico Transitorio/metabolismo , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Animales , Biomarcadores , Catalasa/metabolismo , Modelos Animales de Enfermedad , Gerbillinae , Glutatión Peroxidasa/metabolismo , Inmunohistoquímica , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/patología , Masculino , Superóxido Dismutasa-1/metabolismo
5.
Anat Cell Biol ; 50(4): 284-292, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29354300

RESUMEN

The genus Populus (poplar) belonging to the Salicaceae family has been used in traditional medicine, and its several species show various pharmacological properties including antioxidant and anti-inflammatory effects. No study regarding protective effects of Populus species against cerebral ischemia has been reported. Therefore, in the present study, we examined neuroprotective effects of ethanol extract from Populus tomentiglandulosa (Korea poplar) in the hippocampal cornu ammonis (CA1) area of gerbils subjected to 5 minutes of transient global cerebral ischemia. Pretreatment with 200 mg/kg of P. tomentiglandulosa extract effectively protected CA1 pyramidal neurons from transient global cerebral ischemia. In addition, glial fibrillary acidic protein immunoreactive astrocytes and ionized calcium binding adapter molecule 1 immunoreactive microglia were significantly diminished in the ischemic CA1 area by pretreatment with 200 mg/kg of P. tomentiglandulosa extract. Briefly, our results indicate that pretreatment with P. tomentiglandulosa extract protects neurons from transient cerebral ischemic injury and diminish cerebral ischemia-induced reactive gliosis in ischemic CA1 area. Based on these results, we suggest that P. tomentiglandulosa can be used as a potential candidate for prevention of ischemic injury.

6.
Chin Med J (Engl) ; 128(21): 2932-7, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26521793

RESUMEN

BACKGROUND: Water dropwort (Oenanthe javanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthe javanica extract (OJE) in the hippocampal cornus ammonis 1 region (CA1 region) of the gerbil subjected to transient cerebral ischemia. METHODS: Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry. RESULTS: Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed in many nonpyramidal cells. Treatment with 200 mg/kg, not 100 mg/kg, OJE protected CA1 pyramidal neurons from ischemic damage. In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups. CONCLUSION: Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE.


Asunto(s)
Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Ataque Isquémico Transitorio/prevención & control , Oenanthe/química , Extractos Vegetales/uso terapéutico , Animales , Gerbillinae , Glutatión Peroxidasa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino
7.
Chin Med J (Engl) ; 128(12): 1649-54, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-26063368

RESUMEN

BACKGROUND: Oenanthe javanica (O. javanica) has been known to have high antioxidant properties via scavenging reactive oxygen species. We examined the effect of O. javanica extract (OJE) on antioxidant enzymes in the rat liver. METHODS: We examined the effect of the OJE on copper, zinc-superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPx) in the rat liver using immunohistochemistry and western blot analysis. Sprague-Dawley rats were randomly assigned to three groups; (1) normal diet fed group (normal-group), (2) diet containing ascorbic acid (AA)-fed group (AA-group) as a positive control, (3) diet containing OJE-fed group (OJE-group). RESULTS: In this study, no histopathological finding in the rat liver was found in all the experimental groups. Numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells and their protein levels were significantly increased in the AA-fed group compared with those in the normal-group. On the other hand, in the OJE-group, numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells in the liver were significantly increased by about 190%, 478%, 685%, and 346%, respectively, compared with those in the AA-group. In addition, protein levels of SOD1, SOD2, CAT, and GPx in the OJE-group were also significantly much higher than those in the AA-group. CONCLUSION: OJE significantly increased expressions of SOD1 and SOD2, CAT, and GPx in the liver cells of the rat, and these suggests that significant enhancements of endogenous enzymatic antioxidants by OJE might be a legitimate strategy for decreasing oxidative stresses in the liver.


Asunto(s)
Hígado/efectos de los fármacos , Hígado/enzimología , Oenanthe/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/metabolismo , Ácido Ascórbico/farmacología , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Inmunohistoquímica , Hígado/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa GPX1
8.
Neurochem Res ; 37(2): 261-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21927927

RESUMEN

Oxidative stress is one of the most important factors in reducing adult hippocampal neurogenesis in the adult brain. In this study, we observed the effects of Cu,Zn-superoxide dismutase (SOD1) on lipid peroxidation, cell proliferation, and neuroblast differentiation in the mouse dentate gyrus using malondialdehyde (MDA), Ki67, and doublecortin (DCX), respectively. We constructed an expression vector, PEP-1, fused PEP-1 with SOD1, and generated PEP-1-SOD1 fusion protein. We administered PEP-1 and 100 or 500 µg PEP-1-SOD1 intraperitoneally once a day for 3 weeks and sacrificed at 30 min after the last administrations. PEP-1 administration did not change the MDA levels compared to those in the vehicle-treated group, while PEP-1-SOD1 treatment significantly reduced MDA levels compared to the vehicle-treated group. In the PEP-1-treated group, the number of Ki67-positive nuclei was similar to that in the vehicle-treated group. In the 100 µg PEP-1-SOD1-treated group, the number of Ki67-positive nuclei was slightly decreased; however, in the 500 µg PEP-1-SOD1-treated group, Ki67-positive nuclei were decreased to 78.5% of the vehicle-treated group. The number of DCX-positive neuroblasts in the PEP-1-treated group was similar to that in the vehicle-treated group. However, the arborization of DCX-positive neuroblasts was significantly decreased in both the 100 and 500 µg PEP-1-SOD1-treated groups compared to that in the vehicle-treated group. The number of DCX-positive neuroblasts with tertiary dendrites was markedly decreased in the 500 µg PEP-1-SOD1-treated group. These results suggest that a SOD1 supplement to healthy mice may not be necessary to modulate cell proliferation and neuroblast differentiation in the dentate gyrus.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Giro Dentado/enzimología , Neuronas/citología , Superóxido Dismutasa/metabolismo , Animales , Secuencia de Bases , Western Blotting , Cartilla de ADN , Giro Dentado/citología , Proteína Doblecortina , Inmunohistoquímica , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Neurochem Res ; 36(11): 2043-50, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21667226

RESUMEN

The fruit of Terminalia chebula Retz has been used as a traditional medicine in Asia and contains tannic acid, chebulagic acid, chebulinic acid and corilagin. Extract from T. chebula seeds (TCE) has various biological functions. We observed the neuroprotective effects of TCE against ischemic damage in the hippocampal C1 region (CA1) of the gerbil that had received oral administrations of TCE (100 mg/kg) once a day for 7 days before the induction of transient cerebral ischemia. In the TCE-treated ischemia group, neuronal neuclei (a marker for neurons)-positive neurons were distinctively abundant (62% of the sham group) in the CA1 4 days after ischemia-reperfusion (I-R) compared to those (12.2% of the sham group) in the vehicle-treated ischemia group. Four days after I-R TCE treatment markedly decreased the activation of astrocytes and microglia in the ischemic CA1 compared with the vehicle-treated ischemia group. In addition, immunoreactivities of Cu, Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2) and brain-derived neurotrophic factor (BDNF) in the CA1 of the TCE-treated ischemia group were much higher than those in the vehicle-ischemia group 4 days after I-R. Protein levels of SOD1, SOD2 and BDNF in the TCE-treated ischemia group were also much higher than those in the vehicle-ischemia group 4 days after I-R. These results indicate that the repeated supplement of TCE protected neurons from ischemic damage induced by transient cerebral ischemia by maintaining SODs and BDNF levels as well as decreasing glial activation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Ataque Isquémico Transitorio/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Superóxido Dismutasa/metabolismo , Terminalia/química , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Gerbillinae , Ataque Isquémico Transitorio/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA