Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7930): 61-66, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914677

RESUMEN

Digital logic circuits are based on complementary pairs of n- and p-type field effect transistors (FETs) via complementary metal oxide semiconductor technology. In three-dimensional (3D) or bulk semiconductors, substitutional doping of acceptor or donor impurities is used to achieve p- and n-type FETs. However, the controllable p-type doping of low-dimensional semiconductors such as two-dimensional (2D) transition-metal dichalcogenides (TMDs) has proved to be challenging. Although it is possible to achieve high-quality, low-resistance n-type van der Waals (vdW) contacts on 2D TMDs1-5, obtaining p-type devices by evaporating high-work-function metals onto 2D TMDs has not been realized so far. Here we report high-performance p-type devices on single- and few-layered molybdenum disulfide and tungsten diselenide based on industry-compatible electron beam evaporation of high-work-function metals such as palladium and platinum. Using atomic resolution imaging and spectroscopy, we demonstrate near-ideal vdW interfaces without chemical interactions between the 2D TMDs and 3D metals. Electronic transport measurements reveal that the Fermi level is unpinned and p-type FETs based on vdW contacts exhibit low contact resistance of 3.3 kΩ µm, high mobility values of approximately 190 cm2 V-1 s-1 at room temperature, saturation currents in excess of 10-5 A µm-1 and an on/off ratio of 107. We also demonstrate an ultra-thin photovoltaic cell based on n- and p-type vdW contacts with an open circuit voltage of 0.6 V and a power conversion efficiency of 0.82%.

2.
Nature ; 582(7813): 511-514, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581381

RESUMEN

Decrease in processing speed due to increased resistance and capacitance delay is a major obstacle for the down-scaling of electronics1-3. Minimizing the dimensions of interconnects (metal wires that connect different electronic components on a chip) is crucial for the miniaturization of devices. Interconnects are isolated from each other by non-conducting (dielectric) layers. So far, research has mostly focused on decreasing the resistance of scaled interconnects because integration of dielectrics using low-temperature deposition processes compatible with complementary metal-oxide-semiconductors is technically challenging. Interconnect isolation materials must have low relative dielectric constants (κ values), serve as diffusion barriers against the migration of metal into semiconductors, and be thermally, chemically and mechanically stable. Specifically, the International Roadmap for Devices and Systems recommends4 the development of dielectrics with κ values of less than 2 by 2028. Existing low-κ materials (such as silicon oxide derivatives, organic compounds and aerogels) have κ values greater than 2 and poor thermo-mechanical properties5. Here we report three-nanometre-thick amorphous boron nitride films with ultralow κ values of 1.78 and 1.16 (close to that of air, κ = 1) at operation frequencies of 100 kilohertz and 1 megahertz, respectively. The films are mechanically and electrically robust, with a breakdown strength of 7.3 megavolts per centimetre, which exceeds requirements. Cross-sectional imaging reveals that amorphous boron nitride prevents the diffusion of cobalt atoms into silicon under very harsh conditions, in contrast to reference barriers. Our results demonstrate that amorphous boron nitride has excellent low-κ dielectric characteristics for high-performance electronics.

3.
ACS Appl Mater Interfaces ; 9(33): 27839-27846, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28767219

RESUMEN

Organic crystals deposited on 2-dimensional (2D) van der Waals substrates have been widely investigated due to their unprecedented crystal structures and electrical properties. van der Waals interaction between organic molecules and the substrate induces epitaxial growth of high quality organic crystals and their anomalous crystal morphologies. Here, we report on unique ambipolar charge transport of a "lying-down" pentacene crystal grown on a 2D hexagonal boron nitride van der Waals substrate. From in-depth analysis on crystal growth behavior and ultraviolet photoemission spectroscopy measurement, it is revealed that the pentacene crystal at the initial growth stage have a lattice-strained packing structure and unique energy band structure with a deep highest occupied molecular orbital level compared to conventional "standing-up" crystals. The lattice-strained pentacene few layers enable ambipolar charge transport in field-effect transistors with balanced hole and electron field-effect mobilities. Complementary logic circuits composed of the two identical transistors show clear inverting functionality with a high gain up to 15. The interesting crystal morphology of organic crystals on van der Waals substrates is expected to attract broad attentions on organic/2D interfaces for their electronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA