Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Virol ; 66(2): 149-156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35766471

RESUMEN

A novel, negative-sense, single-stranded RNA virus, Artemisia capillaris nucleorhabdovirus 1 (AcNRV1), was identified in the transcriptome data of Artemisia capillaris (commonly known as capillary wormwood) root tissue. The AcNRV1 genome contains six open reading frames encoding a nucleocapsid (N), phosphoprotein, movement protein P3, matrix protein, glycoprotein, and polymerase (L). Sequence comparison and phylogenetic analysis using L and N protein sequences revealed that AcNRV1 is a novel member of the genus Alphanucleorhabdovirus, one of the six plant-infecting rhabdovirus genera of the family Rhabdoviridae. Wheat yellow striate virus and rice yellow stunt virus were identified as the closest known rhabdoviruses of AcNRV1. The conserved regulatory sequences involved in transcription termination/polyadenylation (TTP) and transcription initiation (TI) of individual genes were identified in the AcNRV1 genome with the consensus sequence 3'-(A/U)UUAUUUUU-GGG-UUG-5' (in the negative-sense genome), whereby dashes separate the TTP, untranscribed intergenic spacer, and TI elements. The AcNRV1 genome sequence will contribute to further understanding the genome structural evolution of plant rhabdoviruses. Keywords: Artemisia capillaris nucleorhabdovirus 1; plant virus; Alphanucleorhabdovirus; Rhabdoviridae.


Asunto(s)
Artemisia , Rhabdoviridae , Artemisia/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , Rhabdoviridae/genética , Transcriptoma , Proteínas Virales/genética
2.
Plant Cell Physiol ; 61(4): 712-721, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31879778

RESUMEN

Development of pollen, the male gametophyte of flowering plants, is tightly controlled by dynamic changes in gene expression. Recent research to clarify the molecular aspects of pollen development has revealed the involvement of several transcription factors in the induction of gene expression. However, limited information is available about the factors involved in the negative regulation of gene expression to eliminate unnecessary transcripts during pollen development. In this study, we revealed that AtNOT1 is an essential protein for proper pollen development and germination capacity. AtNOT1 is a scaffold protein of the AtCCR4-NOT complex, which includes multiple components related to mRNA turnover control in Arabidopsis. Phenotypic analysis using atnot1 heterozygote mutant pollen showed that the mature mutant pollen failed to germinate and also revealed abnormal localization of nuclei and a specific protein at the tricellular pollen stage. Furthermore, transcriptome analysis of atnot1 heterozygote mutant pollen showed that the downregulation of a large number of transcripts, along with the upregulation of specific transcripts required for pollen tube germination by AtNOT1 during late microgametogenesis, is important for proper pollen development and germination. Overall, our findings provide new insights into the negative regulation of gene expression during pollen development, by showing the severely defective phonotype of atnot1 heterozygote mutant pollen.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Polen/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Germinación/genética , Heterocigoto , Polen/metabolismo , Tubo Polínico/metabolismo , Polinización , Regiones Promotoras Genéticas , Factores de Transcripción
3.
Trends Plant Sci ; 22(6): 527-537, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28400173

RESUMEN

Strigolactones (SLs) are plant hormones that have important roles as modulators of plant development. They were originally described as ex planta signaling molecules in the rhizosphere that induce the germination of parasitic plants, a role that was later linked to encouraging the beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. Recently, the focus has shifted to examining the role of SLs in plant-microbe interactions, and has revealed roles for SLs in the association of legumes with nitrogen-fixing rhizobacteria and in interactions with disease-causing pathogens. Here, we examine the role of SLs in plant interactions with beneficial and detrimental organisms, and propose possible future biotechnological applications.


Asunto(s)
Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Simbiosis/fisiología
4.
Plant Cell ; 28(8): 1795-814, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27385817

RESUMEN

Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Yucca/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oxigenasas de Función Mixta/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Yucca/enzimología , Yucca/genética
5.
Plant Cell ; 27(9): 2645-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26373453

RESUMEN

Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB.


Asunto(s)
NADPH Oxidasas/metabolismo , Nicotiana/inmunología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/inmunología , Sistema de Señalización de MAP Quinasas , Datos de Secuencia Molecular , NADPH Oxidasas/genética , Fosforilación , Phytophthora infestans/patogenicidad , Inmunidad de la Planta , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Factores de Transcripción/genética
6.
Plant Signal Behav ; 8(4): e23865, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23425855

RESUMEN

The translocation of effector proteins into the host plant cells is essential for pathogens to suppress plant immune responses. The oomycete pathogen Phytophthora infestans secretes AVR3a, a crucial virulence effector protein with an N-terminal RXLR motif that is required for this translocation. It has been reported that the RXLR motif of P. sojae Avr1b, which is a close homolog of AVR3a, is required for binding to phosphatidylinositol monophosphates (PIPs). However, in our previous report, AVR3a as well as Avr1b bind to PIPs not via RXLR but via lysine residues forming a positively-charged area in the effector domain. In this report, we examined whether other RXLR effectors whose structures have been determined bind to PIPs. Both P. capsici AVR3a11 and Hyaloperonospora arabidopsidis ATR1 have an RXLR motif in their N-terminal regions but did not bind to any PIPs. These results suggest that the RXLR motif is not sufficient for PIP binding.


Asunto(s)
Secuencia de Aminoácidos , Magnoliopsida/microbiología , Oomicetos/patogenicidad , Fosfatos de Fosfatidilinositol/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Factores de Virulencia/metabolismo , Secuencias de Aminoácidos , Arabidopsis/microbiología , Lisina/metabolismo , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidad , Solanum tuberosum/microbiología , Virulencia
7.
Mol Syst Biol ; 4: 193, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18463617

RESUMEN

Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome-wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high-accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high-confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine-specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho-residues in Arabidopsis is similar to that in humans, where over 90 tyrosine-specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.


Asunto(s)
Arabidopsis/metabolismo , Fosfotirosina/análisis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/química , Secuencia Conservada , Fosfoproteínas/química , Fosforilación , Fosfoserina/análisis , Fosfotreonina/análisis , Fosfotirosina/química , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Proteoma/análisis , Proteoma/química , Homología de Secuencia de Aminoácido
8.
Plant Cell ; 19(11): 3791-804, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18032631

RESUMEN

SGT1 (for suppressor of G2 allele of skp1) and RAR1 (for required for Mla12 resistance) are highly conserved eukaryotic proteins that interact with the molecular chaperone HSP90 (for heat shock protein90). In plants, SGT1, RAR1, and HSP90 are essential for disease resistance triggered by a number of resistance (R) proteins. Here, we present structural and functional characterization of plant SGT1 proteins. Random mutagenesis of Arabidopsis thaliana SGT1b revealed that its CS (for CHORD-SGT1) and SGS (for SGT1 specific) domains are essential for disease resistance. NMR-based interaction surface mapping and mutational analyses of the CS domain showed that the CHORD II domain of RAR1 and the N-terminal domain of HSP90 interact with opposite sides of the CS domain. Functional analysis of the CS mutations indicated that the interaction between SGT1 and HSP90 is required for the accumulation of Rx, a potato (Solanum tuberosum) R protein. Biochemical reconstitution experiments suggest that RAR1 may function to enhance the SGT1-HSP90 interaction by promoting ternary complex formation.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Inmunidad , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimología , Secuencia de Aminoácidos , Arabidopsis/inmunología , Secuencia Conservada , Genes Dominantes , Inmunidad Innata , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Proteínas de Plantas/química , Potexvirus/fisiología , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Solanum tuberosum/inmunología , Soluciones , Nicotiana/virología
9.
Curr Opin Microbiol ; 8(4): 399-404, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15996507

RESUMEN

Plants are under constant attack by a vast array of pathogens. To impede their attackers they use both broad-spectrum and pathogen-specific defence mechanisms. The arms race between plants and fungal pathogens is fascinatingly varied, and what might be elicited as a plant defence mechanism against a pathogen could promote or enhance the virulence of other pathogens. Fungi use countermeasures to detoxify plant antimicrobial compounds and to evade host resistance mechanisms. Certain fungal species also manipulate the host hormone balance to create an environment that is beneficial to their survival. Several lines of evidence indicate a co-evolutionary arms race in which both plants and fungi can respond to changes that occur in their opponents.


Asunto(s)
Hongos/patogenicidad , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Antifúngicos/metabolismo , Glucanos/metabolismo , Extractos Vegetales/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/microbiología , Sesquiterpenos , Terpenos , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA