Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
BMC Plant Biol ; 23(1): 147, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932365

RESUMEN

BACKGROUND: Cotton (Gossypium sp.) has been cultivated for centuries for its spinnable fibers, but its seed oil also possesses untapped economic potential if, improvements could be made to its oleic acid content. RESULTS: Previous studies, including those from our laboratory, identified pima accessions containing approximately doubled levels of seed oil oleic acid, compared to standard upland cottonseed oil. Here, the molecular properties of a fatty acid desaturase encoded by a mutant allele identified by genome sequencing in an earlier analysis were analyzed. The mutant sequence is predicted to encode a C-terminally truncated protein lacking nine residues, including a predicted endoplasmic reticulum membrane retrieval motif. We determined that the mutation was caused by a relatively recent movement of a Ty1/copia type retrotransposon that is not found associated with this desaturase gene in other sequenced cotton genomes. The mutant desaturase, along with its repaired isozyme and the wild-type A-subgenome homoeologous protein were expressed in transgenic yeast and stably transformed Arabidopsis plants. All full-length enzymes efficiently converted oleic acid to linoleic acid. The mutant desaturase protein produced only trace amounts of linoleic acid, and only when strongly overexpressed in yeast cells, indicating that the missing C-terminal amino acid residues are not strictly required for enzyme activity, yet are necessary for proper subcellular targeting to the endoplasmic reticulum membrane. CONCLUSION: These results provide the biochemical underpinning that links a genetic lesion present in a limited group of South American pima cotton accessions and their rare seed oil oleic acid traits. Markers developed to the mutant desaturase allele are currently being used in breeding programs designed to introduce this trait into agronomic upland cotton varieties.


Asunto(s)
Gossypium , Ácido Oléico , Ácido Oléico/metabolismo , Gossypium/metabolismo , Ácido Linoleico/análisis , Ácido Linoleico/metabolismo , Alelos , Saccharomyces cerevisiae/metabolismo , Yoduro de Potasio/metabolismo , Fitomejoramiento , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Semillas/metabolismo , Aceite de Semillas de Algodón/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol Biochem ; 196: 940-951, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36889233

RESUMEN

The chemical and physical properties of vegetable oils are largely dictated by the ratios of 4-6 common fatty acids contained within each oil. However, examples of plant species that accumulate from trace amounts to >90% of certain unusual fatty acids in seed triacylglycerols have been reported. Many of the general enzymatic reactions that drive both common and unusual fatty acid biosynthesis and accumulation in stored lipids are known, but which isozymes have evolved to specifically fill this role and how they coordinate in vivo is still poorly understood. Cotton (Gossypium sp.) is the very rare example of a commodity oilseed that produces biologically relevant amounts of unusual fatty acids in its seeds and other organs. In this case, unusual cyclopropyl fatty acids (named after the cyclopropane and cyclopropene moieties within the fatty acids) are found in membrane and storage glycerolipids (e.g. seed oils). Such fatty acids are useful in the synthesis of lubricants, coatings, and other types of valuable industrial feedstocks. To characterize the role of cotton acyltransferases in cyclopropyl fatty acid accumulation for bioengineering applications, we cloned and characterized type-1 and type-2 diacylglycerol acyltransferases from cotton and compared their biochemical properties to that of litchi (Litchi chinensis), another cyclopropyl fatty acid-producing plant. The results presented from transgenic microbes and plants indicate both cotton DGAT1 and DGAT2 isozymes efficiently utilize cyclopropyl fatty acid-containing substrates, which helps to alleviate biosynthetic bottlenecks and enhances total cyclopropyl fatty acid accumulation in the seed oil.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Diglicéridos , Diacilglicerol O-Acetiltransferasa/genética , Gossypium/genética , Isoenzimas , Aciltransferasas , Plantas , Semillas/genética , Ácidos Grasos/química , Triglicéridos , Aceites de Plantas/química , Plantas Modificadas Genéticamente
3.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R171-R182, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503254

RESUMEN

A high-fat (HF) diet causes fatty liver, hyperlipidemia, and hypercholesterolemia, and cottonseed oil (CSO) has been shown to improve liver and plasma lipids in human and mouse models. The purpose of this study was to determine the effect of CSO vs. olive oil (OO)-enriched diets on lipid levels in a HF-diet model of fatty liver disease. We placed mice on a HF diet to induce obesity and fatty liver, after which mice were placed on CSO or OO diets, with chow and HF (5.1 kcal/g) groups as control. When CSO- and OO-fed mice were given isocaloric diets with the HF group, there were no differences in body weight, plasma, or hepatic lipids. However, when the CSO and OO diets were reduced in calories (4.0 kcal/g), CSO and OO groups reduced body weight. The CSO group had lower plasma total cholesterol (-56 ± 6%, P < 0.01), free cholesterol (-53 ± 7%, P < 0.01), triglycerides (-61 ± 14%, P < 0.01), and LDL (-42 ± 16%, P = 0.01) vs. HF group whereas the OO diet lowered LDL (-18 ± 12%, P = 0.05) vs. HF. Furthermore, the CSO diet decreased hepatic total cholesterol (-40 ± 12%, P < 0.01), free cholesterol (-23 ± 11%, P = 0.04), and triglycerides (-47 ± 12%, P = 0.02). There were no significant changes in lipogenesis and fatty acid oxidation among the groups. However, the CSO group increased lipid oxidative gene expression in liver and dihydrosterculic acid increased PPARα target genes with in vitro models. Taken together, consuming a reduced calorie diet enriched in CSO reduces liver and plasma lipid profiles in an obese model of fatty liver.


Asunto(s)
Aceite de Semillas de Algodón , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Peso Corporal , Colesterol , Aceite de Semillas de Algodón/metabolismo , Aceite de Semillas de Algodón/farmacología , Dieta Alta en Grasa , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Aceite de Oliva/farmacología , Aceite de Oliva/metabolismo , Triglicéridos
4.
Plant J ; 108(6): 1735-1753, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643970

RESUMEN

Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.


Asunto(s)
Euphorbiaceae/metabolismo , Proteínas de Plantas/genética , Semillas/metabolismo , Triglicéridos/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Euphorbiaceae/genética , Ácido Graso Desaturasas/genética , Regulación de la Expresión Génica de las Plantas , Leucina Zippers , Luz , Ácidos Linolénicos/genética , Ácidos Linolénicos/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Árboles , Triglicéridos/genética
5.
Planta ; 249(5): 1285-1299, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30610363

RESUMEN

MAIN CONCLUSION: In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here, we use a series of in planta molecular genetic studies and in vitro biochemical measurements to demonstrate that lysophosphatidic acid acyltransferases from two Euphorbiaceae species have high selectivity for incorporation of their respective unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common fatty acids found in membrane lipids.


Asunto(s)
Aciltransferasas/metabolismo , Euphorbiaceae/enzimología , Euphorbiaceae/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Semillas/enzimología , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Ricinoleicos/metabolismo
6.
Planta ; 245(3): 611-622, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27988886

RESUMEN

MAIN CONCLUSION: Some naturally occurring cotton accessions contain commercially attractive seed oil fatty acid profiles. The likely causal factor for a high-oleate trait in pima cotton ( Gossypium barbadense ) accession GB-713 is described here. Vegetable oils are broadly used in the manufacture of many human and animal nutritional products, and in various industrial applications. Along with other well-known edible plant oils from soybean, corn, and canola, cottonseed oil is a valuable commodity. Cottonseed oil is a co-product derived from the processing of cottonseed fiber. In the past, it was used extensively in a variety of food applications. However, cottonseed oil has lost market share in recent years due to less than optimal ratios of the constituent fatty acids found in either traditional or partially hydrogenated oil. Increased awareness of the negative health consequences of dietary trans-fats, along with the public wariness associated with genetically modified organisms has created high demand for naturally occurring oil with high monounsaturate/polyunsaturate ratios. Here, we report the discovery of multiple exotic accessions of pima cotton that contain elevated seed oil oleate content. The genome of one such accession was sequenced, and a mutant candidate fatty acid desaturase-2 (FAD2-1D) gene was identified. The mutant protein produced significantly less linoleic acid in infiltrated Arabidopsis leaf assays, compared to a repaired version of the same enzyme. Identification of this gene provides a valuable resource. Development of markers associated with this mutant locus will be very useful in efforts to breed the high-oleate trait into agronomic fiber accessions of upland cotton.


Asunto(s)
Alelos , Aceite de Semillas de Algodón/química , Ácido Graso Desaturasas/genética , Gossypium/enzimología , Mutación/genética , Ácido Oléico/metabolismo , Secuencia de Aminoácidos , Cromatografía de Gases , Ácido Graso Desaturasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/genética , Ácido Linoleico/análisis , Filogenia , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
Molecules ; 21(11)2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834836

RESUMEN

The tung tree (Vernicia fordii), a non-model woody plant belonging to the Euphorbiaceae family, is a promising economic plant due to the high content of a novel high-value oil in its seeds. Many metabolic pathways are active during seed development. Oil (triacylglycerols (TAGs)) accumulates in oil bodies distributed in the endosperm cells of tung tree seeds. The relationship between oil bodies and oil content during tung tree seed development was analyzed using ultrastructural observations, which confirmed that oil accumulation was correlated with the volumes and numbers of oil bodies in the endosperm cells during three different developmental stages. For a deeper understanding of seed development, we carried out proteomic analyses. At least 144 proteins were differentially expressed during three different developmental stages. A total of 76 proteins were successfully identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry/mass spectrometry (MALDI-TOF/MS/MS). These proteins were grouped into 11 classes according to their functions. The major groups of differentially expressed proteins were associated with energy metabolism (25%), fatty acid metabolism (15.79%) and defense (14.47%). These results strongly suggested that a very high percentage of gene expression in seed development is dedicated to the synthesis and accumulation of TAGs.


Asunto(s)
Aleurites/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Semillas/crecimiento & desarrollo , Aleurites/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gotas Lipídicas/metabolismo , Redes y Vías Metabólicas , Aceites de Plantas/química , Semillas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Triglicéridos/metabolismo
8.
Sci Rep ; 6: 22181, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26916792

RESUMEN

Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.


Asunto(s)
Reactores Biológicos , Brassicaceae/metabolismo , Productos Agrícolas/metabolismo , Ingeniería Metabólica , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ceras/metabolismo , Brassicaceae/genética , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética
9.
Plant Physiol ; 170(1): 163-79, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26586834

RESUMEN

The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicerol-3-Fosfato O-Aciltransferasa/genética , Triglicéridos/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes Esenciales , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Homocigoto , Lípidos de la Membrana/biosíntesis , Mutación , Plantas Modificadas Genéticamente , Polen/genética , Semillas/química , Semillas/genética , Semillas/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismo
10.
PLoS One ; 9(2): e88409, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24516650

RESUMEN

Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii), whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the "proline knot" motif (PX5SPX3P) shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach), Populus trichocarpa (poplar), Ricinus communis (castor bean), Theobroma cacao (cacao) and Vitis vinifera (grapevine). Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1) All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2) OLE mRNA levels were much higher in seeds than leaves or flowers; 3) OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4) OLE mRNA levels rapidly increased during seed development; and 5) OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1-3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants.


Asunto(s)
Aleurites/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Semillas/genética , Alineación de Secuencia
11.
PLoS One ; 8(10): e76946, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146944

RESUMEN

Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.


Asunto(s)
Aleurites/genética , Diacilglicerol O-Acetiltransferasa/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Aleurites/clasificación , Aleurites/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Clonación Molecular , Secuencia Conservada , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Flores/genética , Flores/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Especificidad de Órganos , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Alineación de Secuencia
12.
Plant Physiol ; 155(2): 683-93, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21173026

RESUMEN

Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expression of castor (Ricinus communis) fatty acid hydroxylase (RcFAH) in Arabidopsis (Arabidopsis thaliana) resulted in only 17% hydroxy fatty acids (HFAs) in the seed oil. In order to increase HFA levels, we investigated castor phospholipid:diacylglycerol acyltransferase (PDAT). We cloned cDNAs encoding three putative PDAT enzymes from a castor seed cDNA library and coexpressed them with RcFAH12. One isoform, RcPDAT1A, increased HFA levels to 27%. Analysis of HFA-triacylglycerol molecular species and regiochemistry, along with analysis of the HFA content of phosphatidylcholine, indicates that RcPDAT1A functions as a PDAT in vivo. Expression of RcFAH12 alone leads to a significant decrease in FA content of seeds. Coexpression of RcPDAT1A and RcDGAT2 (for diacylglycerol acyltransferase 2) with RcFAH12 restored FA levels to nearly wild-type levels, and this was accompanied by a major increase in the mass of HFAs accumulating in the seeds. We show the usefulness of RcPDAT1A for engineering plants with high levels of HFAs and alleviating bottlenecks due to the production of unusual FAs in transgenic oilseeds.


Asunto(s)
Aciltransferasas/metabolismo , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Hidroxiácidos/metabolismo , Ricinus communis/enzimología , Aciltransferasas/genética , Ricinus communis/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Aceites de Plantas/química , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Semillas/química , Transformación Genética
13.
BMC Plant Biol ; 10: 250, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21080948

RESUMEN

BACKGROUND: Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological transfer of conjugated fatty acid production to existing oilseed crops. It is expected that these studies will also provide basic information regarding the metabolism of other high-value novel fatty acids. RESULTS: Deep sequencing using 454 technology with non-normalized and normalized cDNA libraries prepared from bitter melon seeds at 18 DAP resulted in the identification of transcripts for the vast majority of known genes involved in fatty acid and triacylglycerol biosynthesis. The non-normalized library provided a transcriptome profile of the early stage in seed development that highlighted the abundance of transcripts for genes encoding seed storage proteins as well as for a number of genes for lipid metabolism-associated polypeptides, including Δ12 oleic acid desaturases and fatty acid conjugases, class 3 lipases, acyl-carrier protein, and acyl-CoA binding protein. Normalization of cDNA by use of a duplex-specific nuclease method not only increased the overall discovery of genes from developing bitter melon seeds, but also resulted in the identification of 345 contigs with homology to 189 known lipid genes in Arabidopsis. These included candidate genes for eleostearic acid metabolism such as diacylglycerol acyltransferase 1 and 2, and a phospholipid:diacylglycerol acyltransferase 1-related enzyme. Transcripts were also identified for a novel FAD2 gene encoding a functional Δ12 oleic acid desaturase with potential implications for eleostearic acid biosynthesis. CONCLUSIONS: 454 deep sequencing, particularly with normalized cDNA populations, was an effective method for mining of genes associated with eleostearic acid metabolism in developing bitter melon seeds. The transcriptomic data presented provide a resource for the study of novel fatty acid metabolism and for the biotechnological production of conjugated fatty acids and possibly other novel fatty acids in established oilseed crops.


Asunto(s)
Perfilación de la Expresión Génica , Ácidos Linolénicos/metabolismo , Momordica charantia/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , ADN Complementario/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Lípidos/análisis , Datos de Secuencia Molecular , Momordica charantia/crecimiento & desarrollo , Momordica charantia/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Homología de Secuencia de Aminoácido
14.
Plant Physiol Biochem ; 47(10): 867-79, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19539490

RESUMEN

Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the committed step in the production of glycerolipids, which are major components of cellular membranes, seed storage oils, and epicuticular wax coatings. While the biochemical activities of GPATs have been characterized in detail, the cellular features of these enzymes are only beginning to emerge. Here we characterized the phylogenetic relationships and cellular properties of two GPAT enzymes from the relatively large Arabidopsis thaliana GPAT family, including GPAT8, which is involved in cutin biosynthesis, and GPAT9, which is a new putative GPAT that has extensive homology with a GPAT from mammalian cells involved in storage oil formation and, thus, may have a similar role in plants. Immunofluorescence microscopy of transiently-expressed myc-epitope-tagged GPAT8 and GPAT9 revealed that both proteins were localized to the endoplasmic reticulum (ER), and differential permeabilization experiments indicated that their N- and C-termini were oriented towards the cytosol. However, these two proteins contained distinct types of ER retrieval signals, with GPAT8 possessing a divergent type of dilysine motif (-KK-COOH rather than the prototypic -KKXX-COOH or -KXKXX-COOH motif) and GPAT9 possessing a hydrophobic pentapeptide motif (-phi-X-X-K/R/D/E-phi-; where phi are large hydrophobic amino acid residues). Notably, the divergent dilysine motif in GPAT8 only functioned effectively when additional upstream residues were included to provide the proper protein context. Extensive mutational analyses of the divergent dilysine motif, based upon sequences present in the C-termini of other GPAT8s from various plant species, further expanded the functional definition of this molecular targeting signal, thereby providing insight to the targeting signals in other GPAT family members as well as other ER-resident membrane proteins within plant cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Transducción de Señal , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Línea Celular , Células Cultivadas , Variación Genética , Glicerol-3-Fosfato O-Aciltransferasa/clasificación , Glicerol-3-Fosfato O-Aciltransferasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisina/genética , Lisina/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Cebollas/citología , Filogenia , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Nicotiana/citología , Transfección
15.
Plant Biotechnol J ; 6(8): 819-31, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18643899

RESUMEN

SUMMARY: A central goal of green chemistry is to produce industrially useful fatty acids in oilseed crops. Although genes encoding suitable fatty acid-modifying enzymes are available from many wild species, progress has been limited because the expression of these genes in transgenic plants produces low yields of the desired products. For example, Ricinus communis fatty acid hydroxylase 12 (FAH12) produces a maximum of only 17% hydroxy fatty acids (HFAs) when expressed in Arabidopsis. cDNA clones encoding R. communis enzymes for additional steps in the seed oil biosynthetic pathway were identified. Expression of these cDNAs in FAH12 transgenic plants revealed that the R. communis type-2 acyl-coenzyme A:diacylglycerol acyltransferase (RcDGAT2) could increase HFAs from 17% to nearly 30%. Detailed comparisons of seed neutral lipids from the single- and double-transgenic lines indicated that RcDGAT2 substantially modified the triacylglycerol (TAG) pool, with significant increases in most of the major TAG species observed in native castor bean oil. These data suggest that RcDGAT2 prefers acyl-coenzyme A and diacylglycerol substrates containing HFAs, and biochemical analyses of RcDGAT2 expressed in yeast cells confirmed a strong preference for HFA-containing diacylglycerol substrates. Our results demonstrate that pathway engineering approaches can be used successfully to increase the yields of industrial feedstocks in plants, and that members of the DGAT2 gene family probably play a key role in this process.


Asunto(s)
Acilcoenzima A/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Ricinoleicos/metabolismo , Ricinus communis/enzimología , Ricinus communis/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Aceite de Ricino/biosíntesis , ADN Complementario/genética , ADN de Plantas/genética , Biblioteca de Genes , Vectores Genéticos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Semillas/enzimología , Semillas/genética , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Transformación Genética , Triglicéridos/biosíntesis
16.
Curr Opin Plant Biol ; 10(3): 236-44, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17434788

RESUMEN

Oilseeds provide a unique platform for the production of high-value fatty acids that can replace non-sustainable petroleum and oceanic sources of specialty chemicals and aquaculture feed. However, recent efforts to engineer the seeds of crop and model plant species to produce new types of fatty acids, including hydroxy and conjugated fatty acids for industrial uses and long-chain omega-3 polyunsaturated fatty acids for farmed fish feed, have met with only modest success. The collective results from these studies point to metabolic 'bottlenecks' in the engineered plant seeds that substantially limit the efficient or selective flux of unusual fatty acids between different substrate pools and ultimately into storage triacylglycerol. Evidence is emerging that diacylglycerol acyltransferase 2, which catalyzes the final step in triacylglycerol assembly, is an important contributor to the synthesis of unusual fatty acid-containing oils, and is likely to be a key target for future oilseed metabolic engineering efforts.


Asunto(s)
Productos Agrícolas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Acuicultura , Vías Biosintéticas/fisiología , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Aceites Industriales/provisión & distribución
17.
Plant Cell ; 18(9): 2294-313, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16920778

RESUMEN

Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing approximately 80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2), two unrelated enzymes that catalyze the committed step in TAG biosynthesis. We show that both enzymes are encoded by single genes and that DGAT1 is expressed at similar levels in various organs, whereas DGAT2 is strongly induced in developing seeds at the onset of oil biosynthesis. Expression of DGAT1 and DGAT2 in yeast produced different types and proportions of TAGs containing eleostearic acid, with DGAT2 possessing an enhanced propensity for the synthesis of trieleostearin, the main component of tung oil. Both DGAT1 and DGAT2 are located in distinct, dynamic regions of the endoplasmic reticulum (ER), and surprisingly, these regions do not overlap. Furthermore, although both DGAT1 and DGAT2 contain a similar C-terminal pentapeptide ER retrieval motif, this motif alone is not sufficient for their localization to specific regions of the ER. These data suggest that DGAT1 and DGAT2 have nonredundant functions in plants and that the production of storage oils, including those containing unusual fatty acids, occurs in distinct ER subdomains.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/fisiología , Retículo Endoplásmico/enzimología , Euphorbiaceae/enzimología , Triglicéridos/biosíntesis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Diacilglicerol O-Acetiltransferasa/análisis , Diacilglicerol O-Acetiltransferasa/química , Euphorbiaceae/genética , Flores/enzimología , Flores/genética , Ácidos Linolénicos/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Aceites de Plantas/química , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/ultraestructura , Transporte de Proteínas/genética , Semillas/enzimología , Semillas/genética , Alineación de Secuencia , Especificidad por Sustrato , Nicotiana/citología , Nicotiana/genética
18.
Plant Physiol ; 129(4): 1700-9, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12177483

RESUMEN

Acyl-coenzyme A (CoA) synthetases (ACSs, EC 6.2.1.3) catalyze the formation of fatty acyl-CoAs from free fatty acid, ATP, and CoA. Essentially all de novo fatty acid synthesis occurs in the plastid. Fatty acids destined for membrane glycerolipid and triacylglycerol synthesis in the endoplasmic reticulum must be first activated to acyl-CoAs via an ACS. Within a family of nine ACS genes from Arabidopsis, we identified a chloroplast isoform, LACS9. LACS9 is highly expressed in developing seeds and young rosette leaves. Both in vitro chloroplast import assays and transient expression of a green fluorescent protein fusion indicated that the LACS9 protein is localized in the plastid envelope. A T-DNA knockout mutant (lacs9-1) was identified by reverse genetics and these mutant plants were indistinguishable from wild type in growth and appearance. Analysis of leaf lipids provided no evidence for compromised export of acyl groups from chloroplasts. However, direct assays demonstrated that lacs9-1 plants contained only 10% of the chloroplast long-chain ACS activity found for wild type. The residual long-chain ACS activity in mutant chloroplasts was comparable with calculated rates of fatty acid synthesis. Although another isozyme contributes to the activation of fatty acids during their export from the chloroplast, LACS9 is a major chloroplast ACS.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Coenzima A Ligasas/genética , Ácidos Grasos/metabolismo , Acilcoenzima A/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimología , Coenzima A Ligasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mutación , Cebollas/genética , Cebollas/metabolismo , Pisum sativum/citología , Pisum sativum/metabolismo , Fenotipo , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA