Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EBioMedicine ; 31: 226-242, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29735415

RESUMEN

The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn-/-;SMN2 and Smn2B/- mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Proteínas de Unión al ADN , Suplementos Dietéticos , Atrofia Muscular Espinal , Prednisolona/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción de Tipo Kruppel , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 13(4): e1006744, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28426667

RESUMEN

Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Fosfoglicerato Quinasa/genética , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Adenosina Trifosfato/metabolismo , Animales , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Mitocondrias/metabolismo , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Fosfoglicerato Quinasa/antagonistas & inhibidores , Prazosina/administración & dosificación , Prazosina/análogos & derivados , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA