Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 306(9): 2388-2399, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35475324

RESUMEN

Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.


Asunto(s)
Oxitocina , Proopiomelanocortina , Ratones , Animales , Femenino , Proopiomelanocortina/metabolismo , Oxitocina/análisis , Oxitocina/metabolismo , Inmunohistoquímica , Hipotálamo/metabolismo , Vasopresinas/análisis , Vasopresinas/genética , Vasopresinas/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Receptores de Melanocortina/metabolismo
2.
Neurochem Res ; 43(4): 821-837, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29397535

RESUMEN

The pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamic arcuate nucleus (ARC) are involved in the control of food intake and metabolic processes. It is assumed that, in addition to leptin, the activity of these neurons is regulated by serotonin and dopamine, but only subtype 2C serotonin receptors (5-HT2CR) was identified earlier on the POMC-neurons. The aim of this work was a comparative study of the localization and number of leptin receptors (LepR), types 1 and 2 dopamine receptors (D1R, D2R), 5-HT1BR and 5-HT2CR on the POMC-neurons and the expression of the genes encoding them in the ARC of the normal and diet-induced obese (DIO) rodents and the agouti mice (A y /a) with the melanocortin obesity. As shown by immunohistochemistry (IHC), all the studied receptors were located on the POMC-immunopositive neurons, and their IHC-content was in agreement with the expression of their genes. In DIO rats the number of D1R and D2R in the POMC-neurons and their expression in the ARC were reduced. In DIO mice the number of D1R and D2R did not change, while the number of LepR and 5-HT2CR was increased, although to a small extent. In the POMC-neurons of agouti mice the number of LepR, D2R, 5-HT1BR and 5-HT2CR was increased, and the D1R number was reduced. Thus, our data demonstrates for the first time the localization of different types of the serotonin and dopamine receptors on the POMC-neurons and a specific pattern of the changes of their number and expression in the DIO and melanocortin obesity.


Asunto(s)
Hipotálamo/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/biosíntesis , Receptores Dopaminérgicos/biosíntesis , Receptores de Leptina/biosíntesis , Receptores de Serotonina/biosíntesis , Animales , Femenino , Hipotálamo/química , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/metabolismo , Proopiomelanocortina/análisis , Ratas , Ratas Wistar , Receptores Dopaminérgicos/análisis , Receptores de Leptina/análisis , Receptores de Serotonina/análisis , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA