Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
mBio ; 6(5): e01316-15, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26374123

RESUMEN

UNLABELLED: With over 3.5 billion people at risk and approximately 390 million human infections per year, dengue virus (DENV) disease strains health care resources worldwide. Previously, we and others established models for DENV pathogenesis in mice that completely lack subunits of the receptors (Ifnar and Ifngr) for type I and type II interferon (IFN) signaling; however, the utility of these models is limited by the pleotropic effect of these cytokines on innate and adaptive immune system development and function. Here, we demonstrate that the specific deletion of Ifnar expression on subsets of murine myeloid cells (LysM Cre(+) Ifnar(flox/flox) [denoted as Ifnar(f/f) herein]) resulted in enhanced DENV replication in vivo. The administration of subneutralizing amounts of cross-reactive anti-DENV monoclonal antibodies to LysM Cre(+) Ifnar(f/f) mice prior to infection with DENV serotype 2 or 3 resulted in antibody-dependent enhancement (ADE) of infection with many of the characteristics associated with severe DENV disease in humans, including plasma leakage, hypercytokinemia, liver injury, hemoconcentration, and thrombocytopenia. Notably, the pathogenesis of severe DENV-2 or DENV-3 infection in LysM Cre(+) Ifnar(f/f) mice was blocked by pre- or postexposure administration of a bispecific dual-affinity retargeting molecule (DART) or an optimized RIG-I receptor agonist that stimulates innate immune responses. Our findings establish a more immunocompetent animal model of ADE of infection with multiple DENV serotypes in which disease is inhibited by treatment with broad-spectrum antibody derivatives or innate immune stimulatory agents. IMPORTANCE: Although dengue virus (DENV) infects hundreds of millions of people annually and results in morbidity and mortality on a global scale, there are no approved antiviral treatments or vaccines. Part of the difficulty in evaluating therapeutic candidates is the lack of small animal models that are permissive to DENV and recapitulate the clinical features of severe human disease. Using animals lacking the type I interferon receptor only on myeloid cell subsets, we developed a more immunocompetent mouse model of severe DENV infection with characteristics of the human disease, including vascular leakage, hemoconcentration, thrombocytopenia, and liver injury. Using this model, we demonstrate that pathogenesis by two different DENV serotypes is inhibited by therapeutic administration of a genetically modified antibody or a RIG-I receptor agonist that stimulates innate immunity.


Asunto(s)
Anticuerpos Bloqueadores/sangre , Acrecentamiento Dependiente de Anticuerpo , Virus del Dengue/inmunología , Dengue/tratamiento farmacológico , Dengue/patología , Modelos Animales de Enfermedad , Factores Inmunológicos/aislamiento & purificación , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Antivirales/sangre , Dengue/inmunología , Dengue/virología , Evaluación Preclínica de Medicamentos/métodos , Factores Inmunológicos/uso terapéutico , Ratones
2.
Viruses ; 7(5): 2404-27, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25984714

RESUMEN

Iminosugars are capable of targeting the life cycles of multiple viruses by blocking host endoplasmic reticulum α-glucosidase enzymes that are required for competent replication of a variety of enveloped, glycosylated viruses. Iminosugars as a class are approved for use in humans with diseases such as diabetes and Gaucher's disease, providing evidence for safety of this class of compounds. The in vitro antiviral activity of iminosugars has been described in several publications with a subset of these demonstrating in vivo activity against flaviviruses, herpesviruses, retroviruses and filoviruses. Although there is compelling non-clinical in vivo evidence of antiviral efficacy, the efficacy of iminosugars as antivirals has yet to be demonstrated in humans. In the current study, we report a novel iminosugar, UV-12, which has efficacy against dengue and influenza in mouse models. UV-12 exhibits drug-like properties including oral bioavailability and good safety profile in mice and guinea pigs. UV-12 is an example of an iminosugar with activity against multiple virus families that should be investigated in further safety and efficacy studies and demonstrates potential value of this drug class as antiviral therapeutics.


Asunto(s)
Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Iminoazúcares/uso terapéutico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Animales , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Cobayas , Iminoazúcares/farmacología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Orthomyxoviridae/efectos de los fármacos , Resultado del Tratamiento
3.
Antiviral Res ; 99(3): 371-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23820269

RESUMEN

An influenza pandemic poses a serious threat to humans and animals. Conventional treatments against influenza include two classes of pathogen-targeting antivirals: M2 ion channel blockers (such as amantadine) and neuraminidase inhibitors (such as oseltamivir). Examination of the mechanism of influenza viral infection has shown that endosomal acidification plays a major role in facilitating the fusion between viral and endosomal membranes. This pathway has led to investigations on vacuolar ATPase (v-ATPase) activity, whose role as a regulating factor on influenza virus replication has been verified in extensive genome-wide screenings. Blocking v-ATPase activity thus presents the opportunity to interfere with influenza viral infection by preventing the pH-dependent membrane fusion between endosomes and virions. This study aims to apply diphyllin, a natural compound shown to be as a novel v-ATPase inhibitor, as a potential antiviral for various influenza virus strains using cell-based assays. The results show that diphyllin alters cellular susceptibility to influenza viruses through the inhibition of endosomal acidification, thus interfering with downstream virus replication, including that of known drug-resistant strains. In addition, combinatorial treatment of the host-targeting diphyllin with pathogen-targeting therapeutics (oseltamivir and amantadine) demonstrates enhanced antiviral effects and cell protection in vitro.


Asunto(s)
Antivirales/farmacología , Benzodioxoles/farmacología , Medicamentos Herbarios Chinos/farmacología , Inhibidores Enzimáticos/farmacología , Gripe Humana/enzimología , Lignanos/farmacología , Orthomyxoviridae/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Amantadina/farmacología , Animales , Quimioterapia Combinada , Endosomas/virología , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Magnoliopsida/química , Fusión de Membrana/efectos de los fármacos , Orthomyxoviridae/fisiología , Oseltamivir/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA