Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 420-430, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403318

RESUMEN

The chemical constituents of Schizonepetae Spica were qualitatively analyzed by UHPLC-Q-TOF-MS/MS. An Agilent poroshell 120 SB-C_(18) column(3.0 mm×100 mm, 2.7 µm) was used for gradient elution with 0.1% formic acid water(A)-acetonitrile(B) solution as mobile phase at the flow rate of 0.4 mL·min~(-1) and column temperature of 45 ℃. The data were collected by scanning in positive and negative ion modes, and the compounds were identified by comparison of reference materials and PeakView software. Ninety-seven compounds were identified from Schizonepetae Spica, including 28 flavonoids, 23 phenolic acids, 23 fatty acids, 15 terpenoids, and 8 other compounds. The UHPLC-Q-TOF-MS/MS method established in this study can identify the chemical components of Schizonepetae Spica rapidly, accurately, and comprehensively, and provide a basis for the basic study of pharmacodynamic substances of Schizonepetae Spica.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Terpenos
2.
Chin Med ; 17(1): 62, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637516

RESUMEN

BACKGROUND: Shuang Huang Lian (SHL) is a traditional Chinese medicine (TCM) formula made from Lonicerae Japonicae Flos, Forsythiae Fructus, and Scutellariae Radix. Despite the widespread use of SHL in clinical practice for treating upper respiratory tract infections (URTIs), the complete component fingerprint and the pharmacologically active components in the SHL formula remain unclear. The objective of this study was to develop an untargeted metabolomics method for component identification, quantitation, pattern recognition, and cross-comparison of various SHL preparation forms (i.e., granule, oral liquid, and tablet). METHODS: Ultra-high-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) together with bioinformatics were used for chemical profiling, identification, and quantitation of SHL. Multivariate data analyses such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to assess the correlations among the three SHL preparation forms and the reproducibility of the technical and biological replicates. RESULTS: A UHPLC-QTOF-MS/MS-based untargeted metabolomics method was developed and applied to analyze three SHL preparation forms, consisting of 178 to 216 molecular features. Among the 95 common molecular features from the three SHL preparation forms, quantitative analysis was performed using a single exogenous reference internal standard. Forty-seven of the 95 common molecular features have been identified using various databases. Among the 47 common components, there were 17 flavonoids, 7 oligopeptides, 5 terpenoids, 2 glycosides, 2 cyclohexanecarboxylic acids, 2 spiro compounds, 2 lipids, 2 glycosylglycerol derivatives, and 8 various compounds such as alkyl caffeate ester, aromatic ketone, benzaldehyde, benzodioxole, benzofuran, chalcone, hydroxycoumarin, and purine nucleoside. Five of the 47 common components were designated by the Chinese Pharmacopoeia as the quality markers of medicinal plants of SHL, and 15 were previously reported to have pharmacological activities. Distinct patterns of the three SHL preparation forms were observed in the PCA and PLS-DA plots. CONCLUSIONS: The developed method is reliable and reproducible, which is useful for the profiling, component identification, quantitation, quality assessment of various SHL preparation forms and may apply to the analysis of other TCM formulas.

3.
Pharmacogn Mag ; 12(46): 134-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27076750

RESUMEN

BACKGROUND: Yinqiaosan (Lonicerae and Forsythiae Powder), as a famous prescription of Dr. Wu Jutong in Qing dynasty of China, has the effects of diaphoresis cooling, fire-purging, and detoxicaton. It is mainly used in the treatment of influenza, hand-foot-mouth disease, esophagitis, pneumonia, acute tonsillitis, mumps, and other viral infections. It is one of the widely used traditional Chinese medicine prescriptions with proven curative effects in clinical use. OBJECTIVE: To research the material basis of Yinqiaosan decoction when decocting mint, herba schizonepetae in different length of later-decoction time, to find the influence on volatile components of Yinqiaosan decoction decocted later in different length of time, to lay the foundation to further clarify the after-decoction mechanism of Yinqiaosan, and the specification of Yinqiaosan decoction process. MATERIALS AND METHODS: Gas chromatography mass spectrometry method is used to analyze the volatile components of Yinqiaosan decoction samples decocted for 0, 3, 5, 8, and 10 min. RESULTS: Later-decocting mint and herba schizonepetae at different time when decocting Yinqiaosan had a significant influence on the volatile components of the solution. 54 different chemical components were identified: 25 were identified when later-decocting the sample for 3 min; 13 were identified when later-decocting the sample for 5 min; 11 were identified when later-decocting the sample for 8 min; 7 were identified when later-decocting the sample for 10 min; and 26 were identified when later-decocting the sample for 0 min. There were more volatile components in the sample after-decocted for 3 min. A total of 54 different chemical components were identified in different later-decocting solution samples. These components form the basis of the Yinqiaosan drug effect. CONCLUSIONS: The length of later-decoction time of mint and herba schizonepetae was confirmed to be 3 min when decocting Yinqiaosan. SUMMARY: Later-decocting mint and herba schizonepetae at different time had a significant influence on the volatile components of the solutionFifty-four different chemical components were identified in different later-decocting solution samplesThere were more volatile components in the sample after-decocted for 3 minThe volatile components content was high. These components form the important basis of the Yinqiaosan drug effect.Total ion flow diagram of volatile oils in the Yinqiaosan sample with mint, herba schizonepetae after 3 min decoction. Abbreviations used: GC-MS: Gas chromatography mass spectrometry, TCM: Traditional Chinese medicine.

4.
Zhongguo Zhong Yao Za Zhi ; 39(16): 3010-7, 2014 Aug.
Artículo en Chino | MEDLINE | ID: mdl-25509279

RESUMEN

Metabonomics is a new method to study on the metabolic network and the relationship between body and environment, which conforms to the way of traditional Chinese medicine (TCM) research. In the study process of modernization of traditional Chinese medicine, effectively conjunction with metabonomics method will facilitate the integration of TCM with modern biological science and technology, and promote the modernization of TCM. This paper introduce the application of metabonomics in the research of toxicity mechanism of TCM, compatibility mechanism of TCM formula, pharmacology effect of TCM and processing mechanism of TCM. This paper summarize the problems in the TCM metabonomics research and prospect its bright future.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/metabolismo , Medicina Tradicional China/tendencias , Metabolómica/tendencias , Animales , Quimioterapia , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China/métodos , Metabolómica/métodos
5.
Pharmacogn Mag ; 10(40): 541-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25422559

RESUMEN

BACKGROUND: In traditional Chinese medicine (TCM), raw and processed herbs are used to treat the different diseases. Fructus Arctii, the dried fruits of Arctium lappa l. (Compositae), is widely used in the TCM. Stir-frying is the most common processing method, which might modify the chemical compositions in Fructus Arctii. MATERIALS AND METHODS: To test this hypothesis, we focused on analysis and identification of the main chemical constituents in raw and processed Fructus Arctii (PFA) by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. RESULTS: The results indicated that there was less arctiin in stir-fried materials than in raw materials. however, there were higher levels of arctigenin in stir-fried materials than in raw materials. CONCLUSION: We suggest that arctiin reduced significantly following the thermal conversion of arctiin to arctigenin. In conclusion, this finding may shed some light on understanding the differences in the therapeutic values of raw versus PFA in TCM.

6.
Nat Prod Commun ; 8(10): 1479-80, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24354207

RESUMEN

The essential oils of fresh, shade-dried, sun-dried, and oven-dried mint of Mentha haplocalyx Brig., and the shade-dried herbs after one hour of soaking were analyzed by GC-MS to provide a scientific basis to regulate the drying methods. Fifty-nine compounds were isolated and identified, including 35 from fresh herbs, 25 from shade-dried herbs, 23 from sun-dried herbs, 17 from oven-dried herbs and 48 from shade-dried mint after one hour of soaking. Eighteen compounds were common to all five samples, including menthol, menthone, and isomenthone, which were the main components. Several of these significantly decreased in shade-dried mint soaked in water. Thus in cleaning and drying processes soaking mint in water should be avoided as far as possible, in case major components are extracted thus producing an inferior product that will undermine its curative effect.


Asunto(s)
Desecación/métodos , Mentha/química , Aceites Volátiles/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-23710215

RESUMEN

Pericarpium Citri Reticulatae (Chenpi in Chinese) has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS). One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. ß -Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA