Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 15(30): 12748-12770, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37477348

RESUMEN

Aggregation of both amyloid beta (Aß) peptide and hyperphosphorylated tau proteins is the major pathological hallmark of Alzheimer's disease (AD). Moieties that carry anti-amyloidogenic potency against both of the aggregating entities are considered to be promising drug candidatures for the disease. In the current work, we have synthesized amphipathic dipeptide vesicle-templated selenium nanoparticles (RΔF-SeNPs) as potential entities to combat AD. We have investigated and established their anti-amyloidogenic activity against different peptide-based amyloid models, such as the reductionist model based on the dipeptide phenylalanine-phenylalanine (FF) derived from Aß; a model based on the hexapeptide Ac-PHF6 (306VQIVYK311) derived from tau protein; and the full-length Aß42 polypeptide-based model. We also evaluated the neuroprotective characteristics of RΔF-SeNPs against FF, Ac-PHF6, and Aß42 fibril-induced toxicity in neuroblastoma, SH-SY5Y cells. RΔF-SeNPs further exhibited neuroprotective effects in streptozotocin (STZ) treated neuronal (N2a) cells carrying AD-like features. In addition, studies conducted in an intra-cerebroventricular STZ-instigated rat model of dementia revealed that RΔF-SeNP-treated animals showed improved cognitive activity and reduced Aß42 aggregate burden in brain tissues as compared with the STZ-treated group. Moreover, in vivo brain distribution studies conducted in animal models additionally demonstrated the brain-homing ability of RΔF-SeNPs. All together, these studies supported the potency of RΔF-SeNPs as efficient and propitious disease-modifying therapeutic agents for combating AD.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Neuroblastoma , Selenio , Ratas , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Selenio/farmacología , Arginina , Fenilalanina/farmacología , Dipéptidos , Estreptozocina/uso terapéutico , Nanopartículas/uso terapéutico , Fragmentos de Péptidos/farmacología
2.
Life Sci ; 286: 119989, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597609

RESUMEN

AIMS: Isoformononetin (IFN), a methoxyl isoflavone present in most of human dietary supplements. However, being a highly potent antioxidant and anti-inflammatory molecule, its activity against neuronal oxidative stress and neuroinflammation has not been explored till now. The present study was inquested to assess the antioxidant, anti-apoptotic and anti-inflammatory activity of IFN against streptozotocin induced neuroinflammation in different brain regions of rat. MAIN METHODS: Four groups of animals were subjected to treatment as control, toxic control (STZ; single intracerebrovascular injection), third group (STZ + IFN; 20 mg/kg p.o.), fourth group (IFN) for 14 days. The different brain regions of rats were evaluated for inflammatory, apoptotic and biochemical antioxidant markers. The brain tissues were further assessed for gene expression, immunohistochemical and western blotting examination for localization of inflammasome cascade expression that plays a pivotal role in neuroinflammation. KEY FINDINGS: The modulation in oxidant/antioxidant status after exposure of STZ was significantly balanced after administration of IFN to rats. Further, IFN was also found to be an apoptotic agent as it modulates the apoptotic gene (Bax) and anti-apoptotic gene (BcL2) expression. IFN significantly curtailed the augmented protein expression of NLRP3, NLRP2, ASC, NFκBP65, IL-1ß and caspase-1 due to STZ administration in cortex and hippocampus rat brain regions. SIGNIFICANCE: The aforementioned results proclaim the neuroprotective functioning of IFN against STZ induced inflammation. IFN significantly prevents the neuroinflammation by decreasing the generation of ROS that reduces the activation of NLRP3/ASC/IL-1 axis thereby exerting neuroprotection as evidenced in rat model of STZ induced neuroninflammation.


Asunto(s)
Antioxidantes/farmacología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Encefalitis/prevención & control , Interleucina-1/metabolismo , Isoflavonas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estreptozocina/toxicidad , Animales , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Encefalitis/patología , Expresión Génica/fisiología , Interferones/fisiología , Peroxidación de Lípido/efectos de los fármacos , Óxido Nítrico/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Conejos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
3.
Regul Toxicol Pharmacol ; 123: 104960, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34022260

RESUMEN

Cassia occidentalis Linn (CO) is an annual/perennial plant having traditional uses in the treatments of ringworm, gastrointestinal ailments and piles, bone fracture, and wound healing. Previously, we confirmed the medicinal use of the stem extract (ethanolic) of CO (henceforth CSE) in fracture healing at 250 mg/kg dose in rats and described an osteogenic mode of action of four phytochemicals present in CSE. Here we studied CSE's preclinical safety and toxicity. CSE prepared as per regulations of Current Good Manufacturing Practice for human pharmaceuticals/phytopharmaceuticals and all studies were performed in rodents in a GLP-accredited facility. In acute dose toxicity as per New Drug and Clinical Trial Rules, 2019 (prior name schedule Y), in rats and mice and ten-day dose range-finding study in rats, CSE showed no mortality and no gross abnormality at 2500 mg/kg dose. Safety Pharmacology showed no adverse effect on central nervous system, cardiovascular system, and respiratory system at 2500 mg/kg dose. CSE was not mutagenic in the Ames test and did not cause clastogenicity assessed by in vivo bone marrow genotoxicity assay. By a sub chronic (90 days) repeated dose (as per OECD, 408 guideline) study in rats, the no-observed-adverse-effect-level was found to be 2500 mg/kg assessed by clinico-biochemistry and all organs histopathology. We conclude that CSE is safe up to 10X the dose required for its osteogenic effect.


Asunto(s)
Fitoquímicos/toxicidad , Extractos Vegetales/toxicidad , Senna , Animales , Etanol , Ratones , Nivel sin Efectos Adversos Observados , Ratas , Roedores , Pruebas de Toxicidad
4.
BMC Complement Altern Med ; 18(1): 69, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463254

RESUMEN

BACKGROUND: Spinacia oleracea is an important dietary vegetable in India and throughout the world and has many beneficial effects. It is cultivated globally. However, its effect on osteoarthritis that mainly targets the cartilage cells remains unknown. In this study we aimed to evaluate the anti-osteoarthritic and chondro-protective effects of SOE on chemically induced osteoarthritis (OA). METHODS: OA was induced by intra-patellar injection of monosodium iodoacetate (MIA) at the knee joint in rats. SOE was then given orally at 250 and 500 mg.kg- 1 day- 1 doses for 28 days to these rats. Anti-osteoarthritic potential of SOE was evaluated by micro-CT, mRNA and protein expression of pro-inflammatory and chondrogenic genes, clinically relevant biomarker's and behavioural experiments. RESULTS: In vitro cell free and cell based assays indicated that SOE acts as a strong anti-oxidant and an anti-inflammatory agent. Histological analysis of knee joints at the end of the experiment by safranin-o and toluidine blue staining established its protective effect. Radiological data corroborated the findings with improvement in the joint space and irregularity of the articular and atrophied femoral condyles and tibial plateau. Micro-CT analysis of sub-chondral bone indicated that SOE had the ability to mitigate OA effects by increasing bone volume to tissue volume (BV/TV) which resulted in decrease of trabecular pattern factor (Tb.Pf) by more than 200%. SOE stimulated chondrogenic marker gene expression with reduction in pro-inflammatory markers. Purified compounds isolated from SOE exhibited increased Sox-9 and Col-II protein expression in articular chondrocytes. Serum and urine analysis indicated that SOE had the potential to down-regulate glutathione S-transferase (GST) activity, clinical markers of osteoarthritis like cartilage oligometric matrix protein (COMP) and CTX-II. Overall, this led to a significant improvement in locomotion and balancing activity in rats as assessed by Open-field and Rota rod test. CONCLUSION: On the basis of in vitro and in vivo experiments performed with Spinacea oleracea extract we can deduce that SOE has the ability to alleviate the MIA induced deleterious effects.


Asunto(s)
Osteoartritis/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Spinacia oleracea/química , Animales , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , India , Yodoacetatos/efectos adversos , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Osteoartritis/inducido químicamente , Osteoartritis/genética , Osteoartritis/metabolismo , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Tibia/efectos de los fármacos , Tibia/metabolismo , Tibia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA