Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 274(15): 10474-80, 1999 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-10187838

RESUMEN

A partial-length human cDNA with a predicted amino acid sequence homologous to a previously described heparan sulfate iduronyl 2-sulfotransferase (Kobayashi, M., Habuchi, H., Yoneda, M., Habuchi, O., and Kimata, K. (1997) J. Biol. Chem. 272, 13980-13985) was obtained by searching the expressed sequence-tagged data bank. Northern blot analysis was performed using this homologous cDNA as a probe, which demonstrated ubiquitous expression of messages of 5.1 and 2.0 kilobases in a number of human tissues and in several human cancer cell lines. Since the human lymphoma Raji cell line had the highest level of expression, it was used to isolate a full-length cDNA clone. The full-length cDNA was found to contain an open reading frame that predicted a type II transmembrane protein composed of 406 amino acid residues. The cDNA in a baculovirus expression vector was expressed in Sf9 insect cells, and cell extracts were then incubated together with 3'-phosphoadenosine 5'-phospho[35S]sulfate and potential glycosaminoglycan acceptors. This demonstrated substantial sulfotransferase activity with dermatan sulfate, a small degree of activity with chondroitin sulfate, but no sulfotransferase activity with desulfated N-resulfated heparin. Analysis of [35S]sulfate-labeled disaccharide products of chondroitin ABC, chondroitin AC, and chondroitin B lyase treatment demonstrated that the enzyme only transferred sulfate to the 2-position of uronyl residues, which were preponderantly iduronyl residues in dermatan sulfate, but some lesser transfer to glucuronyl residues of chondroitin sulfate.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Dermatán Sulfato/metabolismo , Glucuronatos/metabolismo , Ácido Idurónico/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Baculoviridae , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , ADN Complementario/química , Etiquetas de Secuencia Expresada , Ácido Glucurónico , Humanos , Datos de Secuencia Molecular , Spodoptera , Células Tumorales Cultivadas
2.
J Biol Chem ; 274(8): 5185-92, 1999 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-9988768

RESUMEN

The 3-O-sulfation of glucosamine residues is an important modification during the biosynthesis of heparan sulfate (HS). Our previous studies have led us to purify and molecularly clone the heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST-1), which is the key enzyme converting nonanticoagulant heparan sulfate (HSinact) to anticoagulant heparan sulfate (HSact). In this study, we expressed and characterized the full-length cDNAs of 3-OST-1 homologous genes, designated as 3-OST-2, 3-OST-3A, and 3-OST-3B as described in the accompanying paper (Shworak, N. W., Liu, J., Petros, L. M., Zhang, L., Kobayashi, M., Copeland, N. G., Jenkins, N. A., and Rosenberg, R. D. (1999) J. Biol. Chem. 274, 5170-5184). All these cDNAs were successfully expressed in COS-7 cells, and heparan sulfate sulfotransferase activities were found in the cell extracts. We demonstrated that 3-OST-2, 3-OST-3A, and 3-OST-3B are heparan sulfate D-glucosaminyl 3-O-sulfotransferases because the enzymes transfer sulfate from adenosine 3'-phosphophate 5'-phospho-[35S]sulfate ([35S]PAPS) to the 3-OH position of glucosamine. 3-OST-3A and 3-OST-3B sulfate an identical disaccharide. HSact conversion activity in the cell extract transfected by 3-OST-1 was shown to be 300-fold greater than that in the cell extracts transfected by 3-OST-2 and 3-OST-3A, suggesting that 3-OST-2 and 3-OST-3A do not make HSact. The results of the disaccharide analysis of the nitrous acid-degraded [35S]HS suggested that 3-OST-2 transfers sulfate to GlcA2S-GlcNS and IdoA2S-GlcNS; 3-OST-3A transfers sulfate to IdoA2S-GlcNS. Our results demonstrate that the 3-O-sulfation of glucosamine is generated by different isoforms depending on the saccharide structures around the modified glucosamine residue. This discovery has provided evidence for a new cellular mechanism for generating a defined saccharide sequence in structurally complex HS polysaccharide.


Asunto(s)
Isoenzimas/metabolismo , Sulfotransferasas/metabolismo , Animales , Células COS , Cromatografía Líquida de Alta Presión , ADN Complementario , Isoenzimas/química , Isoenzimas/genética , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sulfatos/metabolismo , Sulfotransferasas/química , Sulfotransferasas/genética , Radioisótopos de Azufre
3.
J Biol Chem ; 274(8): 5170-84, 1999 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-9988767

RESUMEN

3-O-Sulfated glucosaminyl residues are rare constituents of heparan sulfate and are essential for the activity of anticoagulant heparan sulfate. Cellular production of the critical active structure is controlled by the rate-limiting enzyme, heparan sulfate D-glucosaminyl 3-O-sulfotransferase-1 (3-OST-1) (EC 2.8.2.23). We have probed the expressed sequence tag data base with the carboxyl-terminal sulfotransferase domain of 3-OST-1 to reveal three novel, incomplete human cDNAs. These were utilized in library screens to isolate full-length cDNAs. Clones corresponding to predominant transcripts were obtained for the 367-, 406-, and 390-amino acid enzymes 3-OST-2, 3-OST-3A, and 3-OST-3B, respectively. These type II integral membrane proteins are comprised of a divergent amino-terminal region and a very homologous carboxyl-terminal sulfotransferase domain of approximately 260 residues. Also recovered were partial length clones for 3-OST-4. Expression of the full-length enzymes confirms the 3-O-sulfation of specific glucosaminyl residues within heparan sulfate (Liu, J., Shworak, N. W., Sinaÿ, P., Schwartz, J. J. Zhang, L., Fritze, L. M. S., and Rosenberg, R. D. (1999) J. Biol. Chem. 274, 5185-5192). Southern analyses suggest the human 3OST1, 3OST2, and 3OST4 genes, and the corresponding mouse isologs, are single copy. However, 3OST3A and 3OST3B genes are each duplicated in humans and show at least one copy each in mice. Intriguingly, the entire sulfotransferase domain sequence of the 3-OST-3B cDNA (774 base pairs) was 99.2% identical to the same region of 3-OST-3A. Together, these data argue that the structure of this functionally important region is actively maintained by gene conversion between 3OST3A and 3OST3B loci. Interspecific mouse back-cross analysis identified the loci for mouse 3Ost genes and syntenic assignments of corresponding human isologs were confirmed by the identification of mapped sequence-tagged site markers. Northern blot analyses indicate brain exclusive and brain predominant expression of 3-OST-4 and 3-OST-2 transcripts, respectively; whereas, 3-OST-3A and 3-OST-3B isoforms show widespread expression of multiple transcripts. The reiteration and conservation of the 3-OST sulfotransferase domain suggest that this structure is a self-contained functional unit. Moreover, the extensive number of 3OST genes with diverse expression patterns of multiple transcripts suggests that the novel 3-OST enzymes, like 3-OST-1, regulate important biologic properties of heparan sulfate proteoglycans.


Asunto(s)
Isoenzimas/aislamiento & purificación , Sulfotransferasas/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Mapeo Cromosómico , Clonación Molecular , ADN Complementario , Femenino , Humanos , Isoenzimas/química , Isoenzimas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Familia de Multigenes , Conformación Proteica , Homología de Secuencia de Aminoácido , Sulfotransferasas/química , Sulfotransferasas/genética
4.
J Biol Chem ; 272(44): 28008-19, 1997 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-9346953

RESUMEN

The cellular rate of anticoagulant heparan sulfate proteoglycan (HSPGact) generation is determined by the level of a kinetically limiting microsomal activity, HSact conversion activity, which is predominantly composed of the long sought heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST) (Shworak, N. W., Fritze, L. M. S., Liu, J., Butler, L. D., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27063-27071; Liu, J., Shworak, N. W., Fritze, L. M. S., Edelberg, J. M., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27072-27082). Mouse 3-OST cDNAs were isolated by proteolyzing the purified enzyme with Lys-C, sequencing the resultant peptides as well as the existing amino terminus, employing degenerate polymerase chain reaction primers corresponding to the sequences of the peptides as well as the amino terminus to amplify a fragment from LTA cDNA, and utilizing the resultant probe to obtain full-length enzyme cDNAs from a lambda Zap Express LTA cDNA library. Human 3-OST cDNAs were isolated by searching the expressed sequence tag data bank with the mouse sequence, identifying a partial-length human cDNA and utilizing the clone as a probe to isolate a full-length enzyme cDNA from a lambda TriplEx human brain cDNA library. The expression of wild-type mouse 3-OST as well as protein A-tagged mouse enzyme by transient transfection of COS-7 cells and the expression of both wild-type mouse and human 3-OST by in vitro transcription/translation demonstrate that the two cDNAs directly encode both HSact conversion and 3-OST activities. The mouse 3-OST cDNAs exhibit three different size classes because of a 5'-untranslated region of variable length, which results from the insertion of 0-1629 base pairs (bp) between residues 216 and 217; however, all cDNAs contain the same open reading frame of 933 bp. The length of the 3'-untranslated region ranges from 301 to 430 bp. The nucleic acid sequence of mouse and human 3-OST cDNAs are approximately 85% similar, encoding novel 311- and 307-amino acid proteins of 35,876 and 35,750 daltons, respectively, that are 93% similar. The encoded enzymes are predicted to be intraluminal Golgi residents, presumably interacting via their C-terminal regions with an integral membrane protein. Both 3-OST species exhibit five potential N-glycosylation sites, which account for the apparent discrepancy between the molecular masses of the encoded enzyme (approximately 34 kDa) and the previously purified enzyme (approximately 46 kDa). The two 3-OST species also exhibit approximately 50% similarity with all previously identified forms of the heparan biosynthetic enzyme N-deacetylase/N-sulfotransferase, which suggests that heparan biosynthetic enzymes share a common sulfotransferase domain.


Asunto(s)
Sulfotransferasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Línea Celular , Clonación Molecular , ADN Complementario , Humanos , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido , Sulfotransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA