Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1235406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034990

RESUMEN

Background: As a non-pharmacologic treatment, bright light therapy (BLT) is often used to improve affective disorders and memory function. In this study, we aimed to determine the effect of BLT on depression and electrophysiological features of the brain in patients with Alzheimer's disease (AD) and their caregivers using a light-emitting diode device of 14000 lux. Methods: A 4-week case-control trial was conducted. Neuropsychiatric and electroencephalogram (EEG) examination were evaluated at baseline and after 4 weeks. EEG power in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz) bands was calculated for our main analysis. Demographic and clinical variables were analyzed using Student's t test and the chi-square test. Pearson's correlation was used to determine the correlation between electrophysiological features, blood biochemical indicators, and cognitive assessment scale scores. Results: In this study, 22 in-patients with AD and 23 caregivers were recruited. After BLT, the Hamilton depression scale score decreased in the fourth week. Compared with the age-matched controls of their caregivers, a higher spectral power at the lower delta and theta frequencies was observed in the AD group. After BLT, the EEG power of the delta and theta frequencies in the AD group decreased. No change was observed in blood amyloid concentrations before and after BLT. Conclusion: In conclusion, a 4-week course of BLT significantly suppressed depression in patients with AD and their caregivers. Moreover, changes in EEG power were also significant in both groups.

2.
Cancer Lett ; 561: 216157, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011869

RESUMEN

Recent studies have established a strong link between copper and cancer biology, as copper is necessary for cancer growth and metastasis. Beyond the conventional concept of copper serving as a catalytic cofactor of metalloenzymes, emerging evidence demonstrates copper as a regulator for signaling transduction and gene expression, which are vital for tumorigenesis and cancer progression. Interestingly, strong redox-active properties make copper both beneficial and detrimental to cancer cells. Cuproplasia is copper-dependent cell growth and proliferation, whereas cuproptosis is copper-dependent cell death. Both mechanisms act in cancer cells, suggesting that copper depletion and copper supplementation may be viable approaches for developing novel anticancer therapies. In this review, we summarized the current understanding of copper's biological role and related molecular mechanisms in cancer proliferation, angiogenesis, metastasis, autophagy, immunosuppressive microenvironment development, and copper-mediated cancer cell death. We also highlighted copper-based strategies for cancer treatment. The current challenges of copper in cancer biology and therapy and their potential solutions were also discussed. Further investigation in this field will yield a more comprehensive molecular explanation for the causal relationship between copper and cancers. It will reveal a series of key regulators governing copper-dependent signaling pathways, thereby providing potential targets for developing copper-related anticancer drugs.


Asunto(s)
Autofagia , Cobre , Humanos , Carcinogénesis , Catálisis , Ciclo Celular , Apoptosis , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA