Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 121(5): 782-792, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35093340

RESUMEN

The structure of pollen grains, which is typically characterized by soft apertures in an otherwise stiff exine shell, guides their response to changes in the humidity of the environment. These changes can lead to desiccation of the grain and its infolding but also to excessive swelling of the grain and even its bursting. Here we use an elastic model to explore the mechanics of pollen grain swelling and the role of soft, circular apertures (pores) in this process. Small, circular apertures typically occur in airborne and allergenic pollen grains so that the bursting of such grains is important in the context of human health. We identify and quantify a mechanical weakness of the pores, which are prone to rapid inflation when the grain swells to a critical extent. The inflation occurs as a sudden transition and may induce bursting of the grain and release of its content. This process crucially depends on the size of the pores and their softness. Our results provide insight into the inactive part of the mechanical response of pollen grains to hydration when they land on a stigma as well as bursting of airborne pollen grains during changes in air humidity.


Asunto(s)
Alérgenos , Polen , Alérgenos/análisis , Humanos , Polen/química , Polen/fisiología
2.
Proc Natl Acad Sci U S A ; 117(43): 26600-26607, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33028678

RESUMEN

When pollen grains become exposed to the environment, they rapidly desiccate. To protect themselves until rehydration, the grains undergo characteristic infolding with the help of special structures in the grain wall-apertures-where the otherwise thick exine shell is absent or reduced in thickness. Recent theoretical studies have highlighted the importance of apertures for the elastic response and the folding of the grain. Experimental observations show that different pollen grains sharing the same number and type of apertures can nonetheless fold in quite diverse fashions. Using the thin-shell theory of elasticity, we show how both the absolute elastic properties of the pollen wall and the relative elastic differences between the exine wall and the apertures play an important role in determining pollen folding upon desiccation. Focusing primarily on colpate pollen, we delineate the regions of pollen elastic parameters where desiccation leads to a regular, complete closing of all apertures and thus to an infolding which protects the grain against water loss. Phase diagrams of pollen folding pathways indicate that an increase in the number of apertures leads to a reduction of the region of elastic parameters where the apertures close in a regular fashion. The infolding also depends on the details of the aperture shape and size, and our study explains how the features of the mechanical design of apertures influence the pollen folding patterns. Understanding the mechanical principles behind pollen folding pathways should also prove useful for the design of the elastic response of artificial inhomogeneous shells.


Asunto(s)
Polen/química , Polen/fisiología , Fenómenos Biomecánicos/fisiología , Desecación , Elasticidad/fisiología , Polen/anatomía & histología , Polen/metabolismo , Stachys/citología , Stachys/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA