Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Plants ; 5(6): 595-603, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31182840

RESUMEN

The Eurasian grapevine (Vitis vinifera) has long been important for wine production as well as being a food source. Despite being clonally propagated, modern cultivars exhibit great morphological and genetic diversity, with thousands of varieties described in historic and contemporaneous records. Through historical accounts, some varieties can be traced to the Middle Ages, but the genetic relationships between ancient and modern vines remain unknown. We present target-enriched genome-wide sequencing data from 28 archaeological grape seeds dating to the Iron Age, Roman era and medieval period. When compared with domesticated and wild accessions, we found that the archaeological samples were closely related to western European cultivars used for winemaking today. We identified seeds with identical genetic signatures present at different Roman sites, as well as seeds sharing parent-offspring relationships with varieties grown today. Furthermore, we discovered that one seed dated to ~1100 CE was a genetic match to 'Savagnin Blanc', providing evidence for 900 years of uninterrupted vegetative propagation.


Asunto(s)
Productos Agrícolas/genética , Variación Genética , Vitis/genética , Arqueología , Productos Agrícolas/historia , Francia , Historia Antigua , Polimorfismo de Nucleótido Simple , Semillas/genética , Vino
2.
Cell ; 163(3): 571-82, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496604

RESUMEN

The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics.


Asunto(s)
Peste/microbiología , Yersinia pestis/clasificación , Yersinia pestis/aislamiento & purificación , Animales , Asia , ADN Bacteriano/genética , Europa (Continente) , Historia Antigua , Historia Medieval , Humanos , Peste/historia , Peste/transmisión , Siphonaptera/microbiología , Diente/microbiología , Yersinia pestis/genética
3.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24522598

RESUMEN

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Asunto(s)
Genoma Humano/genética , Indígenas Norteamericanos/genética , Filogenia , Arqueología , Asia/etnología , Huesos , Entierro , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Emigración e Inmigración/historia , Europa (Continente)/etnología , Flujo Génico/genética , Haplotipos/genética , Historia Antigua , Humanos , Lactante , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Montana , Dinámica Poblacional , Datación Radiométrica
4.
Nature ; 463(7282): 757-62, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20148029

RESUMEN

We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit.


Asunto(s)
Criopreservación , Extinción Biológica , Genoma Humano/genética , Inuk/genética , Emigración e Inmigración/historia , Genética de Población , Genómica , Genotipo , Groenlandia , Cabello , Historia Antigua , Humanos , Masculino , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Siberia/etnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA