Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phytother Res ; 38(1): 22-41, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37775996

RESUMEN

Drug-induced liver injury (DILI) refers to adverse reactions to small chemical compounds, biological agents, and medical products. These reactions can manifest as acute or chronic damage to the liver. From 1997 to 2016, eight drugs, including troglitazone, nefazodone, and lumiracoxib, were removed from the market due to their liver-damaging effects, which can cause diseases. We aimed to review the recent research on natural products and their bioactive components as hepatoprotective agents in mitigating DILI. Recent articles were fetched via searching the PubMed, PMC, Google Scholar, and Web of Science electronic databases from 2010 to January 2023 using relevant keywords such as "natural products," "acetaminophen," "antibiotics," "paracetamol," "DILI," "hepatoprotective," "drug-induced liver injury," "liver failure," and "mitigation." The studies reveal that the antituberculosis drug (acetaminophen) is the most frequent cause of DILI, and natural products have been largely explored in alleviating acetaminophen-induced liver injury. They exert significant hepatoprotective effects by preventing mitochondrial dysfunction and inflammation, inhibiting oxidative/nitrative stress, and macromolecular damage. Due to the bioavailability and dietary nature, using natural products alone or as an adjuvant with existing drugs is promising. To advance DILI management, it is crucial to conduct well-designed randomized clinical trials to evaluate natural products' efficacy and develop new molecules clinically. However, natural products are a promising solution for remedying drug-induced hepatotoxicity and lowering the risk of DILI.


Asunto(s)
Productos Biológicos , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Acetaminofén/efectos adversos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hígado , Antibacterianos/farmacología
2.
Front Pharmacol ; 14: 1155163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37201024

RESUMEN

Background: Guggulsterone (pregna-4,17-diene-3,16-dione; C21H28O2) is an effective phytosterol isolated from the gum resin of the tree Commiphora wightii (Family Burseraceae) and is responsible for many of the properties of guggul. This plant is widely used as traditional medicine in Ayurveda and Unani system of medicine. It exhibits several pharmacological activities, such as anti-inflammatory, analgesic, antibacterial, anti-septic and anticancer. In this article, the activities of Guggulsterone against cancerous cells were determined and summarized. Methods: Using 7 databases (PubMed, PMC, Google Scholar, Science Direct, Scopus, Cochrane and Ctri.gov), the literature search was conducted since conception until June 2021. Extensive literature search yielded 55,280 studies from all the databases. A total of 40 articles were included in the systematic review and of them, 23 articles were included in the meta-analysis.The cancerous cell lines used in the studies were for pancreatic cancer, hepatocellular carcinoma, head and neck squamous cell carcinoma, cholangiocarcinoma, oesophageal adenocarcinoma, prostrate cancer, colon cancer, breast cancer, gut derived adenocarcinoma, gastric cancer, colorectal cancer, bladder cancer, glioblastoma, histiocytic leukemia, acute myeloid leukemia and non-small cell lung cancer. The reliability of the selected studies was assessed using ToxRTool. Results: Based on this review, guggulsterone significantly affected pancreatic cancer (MiaPaCa-2, Panc-1, PC-Sw, CD18/HPAF, Capan1, PC-3), hepatocellular carcinoma (Hep3B, HepG2, PLC/PRF/5R), head and neck squamous cell carcinoma (SCC4, UM-22b, 1483), cholangiocarcinoma (HuCC-T1, RBE, Sk-ChA-1, Mz-ChA-1) and oesophageal adenocarcinoma (CP-18821, OE19), prostrate cancer (PC-3), colon cancer (HT-29), breast cancer (MCF7/DOX), gut derived adenocarcinoma (Bic-1), gastric cancer (SGC-7901), colorectal cancer (HCT116), bladder cancer (T24, TSGH8301), glioblastoma (A172, U87MG, T98G), histiocytic leukemia (U937), acute myeloid leukemia (HL60, U937) and non-small cell lung cancer (A549, H1975) by inducing apoptotic pathways, inhibiting cell proliferation, and regulating the expression of genes involved in apoptosis. Guggulsterone is known to have therapeutic and preventive effects on various categories of cancers. It can inhibit the progression of tumors and can even reduce their size by inducing apoptosis, exerting anti-angiogenic effects, and modulating various signaling cascades. In vitro studies reveal that Guggulsterone inhibits and suppresses the proliferation of an extensive range of cancer cells by decreasing intrinsic mitochondrial apoptosis, regulating NF-kB/STAT3/ß-Catenin/PI3K/Akt/CHOP pathway, modulating the expression of associated genes/proteins, and inhibiting angiogenesis. Furthermore, Guggulsterone reduces the production of inflammatory markers, such as CDX2 and COX-2. The other mechanism of the Guggulsterone activity is the reversal of P-glycoprotein-mediated multidrug resistance. Twenty three studies were selected for meta-analysis following the PRISMA statements. Fixed effect model was used for reporting the odds ratio. The primary endpoint was percentage apoptosis. 11 of 23 studies reported the apoptotic effect at t = 24 h and pooled odds ratio was 3.984 (CI 3.263 to 4.865, p < 0.001). 12 studies used Guggulsterone for t > 24 h and the odds ratio was 11.171 (CI 9.148 to 13.643, 95% CI, p < 0.001). The sub-group analysis based on cancer type, Guggulsterone dose, and treatment effects. Significant alterations in the level of apoptotic markers were reported by Guggulsterone treatment. Conclusion: This study suggested that Guggulsterone has apoptotic effects against various cancer types. Further investigation of its pharmacological activity and mechanism of action should be conducted. In vivo experiments and clinical trials are required to confirm the anticancer activity.

3.
In Silico Pharmacol ; 10(1): 16, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072559

RESUMEN

Prostate cancer (CaP) is one of the most frequent malignancies amongst men. Enzalutamide is the second-generation potent androgen receptor (AR) antagonist used against metastatic and non-metastatic CaP. Unfortunately, the development of chemoresistance in cancer cells reduces the effectiveness of Enzalutamide. Lupeol is a pentacyclic triterpene found in different fruits, vegetables, and medicinal plants and possesses anti-inflammatory and anti-cancer properties. Here, we report in silico and in vitro studies of Lupeol and Enzalutamide against the ß-CATENIN, c-FLIPL, and c-MYC, which play a significant role in chemoresistance. We observed that Lupeol significantly inhibits the cell growth of chemoresistant Du145 cells and cancer stem cells (CSCs) either alone or in combination with Enzalutamide. Lupeol and Enzalutamide were also found to dock with ß-CATENIN, c-FLIPL, and c-MYC. The following MD simulation data showed both compounds exerting structural changes in these proteins. Finally, they significantly inhibit the transcriptional activity of all these genes, as observed by luciferase assay. Thus, we infer that Lupeol chemosensitizes the CaP cells for Enzalutamide-resistant CaP cells.

4.
Life Sci ; 305: 120792, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35817167

RESUMEN

AIMS: Doxorubicin (DOX) is a widely used drug against multiple cancers. However, its clinical Use is often restricted due to multiple adverse effects. Recently, Selenium Nanoparticles (SeNPs) are gaining attention due to their low toxicity and higher biocompatibility, making them attractive nanoparticles (NPs) in medical and pharmaceutical sciences. Therefore, the current study aimed to assess if our biosynthesized SeNP from the endophytic fungus Fusarium oxysporum conjugated with DOX could alleviate the DOX-induced adverse effects. MAIN METHODS: For this purpose, we investigated various genotoxic, biochemical, histopathological, and immunohistochemical parameters and finally analyzed the metabolite profile by LC-MS/MS. KEY FINDINGS: We observed that DOX causes an increase in reactive oxygen and nitrogen species (ROS, RNS), 8-OHdG, and malondialdehyde (MDA), decreases antioxidant defense systems and reduces BCL-2 expression in cardiac tissue. In addition, a significant increase in DNA damage and alteration in the cytoarchitecture of the liver, kidney, and heart tissues was observed by Comet Tail Length and histopathological studies, respectively. Interestingly, the DOX-SeNP conjugate reduced ROS/RNS, 8-OHdG, and MDA levels in the liver, kidney, and heart tissues. It also restored the antioxidant enzymes and cytoarchitectures of the examined tissues, reduced genotoxicity, and increased the BCL-2 levels. Finally, metabolic profiling showed that DOX reduced the number of cardioprotective metabolites, which DOX-SeNP restored. SIGNIFICANCE: Collectively, the present results describe the protective effect of DOX-conjugated SeNP against DOX-induced toxicities. In conclusion, DOX-SeNP conjugate might be better for treating patients receiving DOX alone. However, it warrants further thorough investigation.


Asunto(s)
Nanopartículas , Selenio , Animales , Antibióticos Antineoplásicos/uso terapéutico , Antioxidantes/metabolismo , Cardiotoxicidad/etiología , Cromatografía Liquida , Doxorrubicina/toxicidad , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-2 , Especies Reactivas de Oxígeno , Selenio/farmacología , Espectrometría de Masas en Tándem
5.
Dalton Trans ; 51(31): 11713-11729, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35852297

RESUMEN

To validate the effect of metal ions in analogous ligand scaffolds on DNA binding and cytotoxic response, we have synthesized a series of water-soluble ionic N-phthaloylglycinate conjugated bis(diaminocyclohexane)M2+ complexes where M = Ni(II), Cu(II) and Zn(II) (1-3). The structural characterization of the complexes (1-3) was achieved by spectroscopic {FT-IR, EPR, UV-vis absorption data, 1H NMR, ESI-MS and elemental analysis} and single crystal X-ray diffraction studies, which revealed different topologies for the late 3d-transition metals. The Ni(II) and Zn(II) complexes exhibited an octahedral geometry with coordinated labile water molecules in the P1̄ space group while the Cu(II) complex revealed a square planar geometry with the P21/c space lattice. In vitro DNA-complexation studies were performed employing various complementary biophysical methods to quantify the intrinsic binding constant Kb and Ksv values and to envisage the binding modes and binding affinity of (1-3) at the therapeutic targets. The corroborative results of these experiments revealed a substantial geometric and electronic effect of (1-3) on DNA binding and the following inferences were observed, (i) high Kb and Ksv values, (ii) remarkable cleavage efficiency via an oxidative pathway, (iii) condensation behavior and (iv) good cytotoxic response to HepG2 and PTEN-caP8 cancer cell lines, with copper(II) complex 2 outperforming the other two complexes as a most promising anticancer drug candidate. Copper(II) complexes have been proven in the literature to be good anticancer drug entities, displaying inhibition of uncontrolled-cell growth by multiple pathways viz., anti-angiogenesis, inducing apoptosis and reactive oxygen species mediated cell death phenomena. Nickel(II) and zinc(II) ionic complexes 1 and 3 have also demonstrated good chemotherapeutic potential in vitro and the bioactive 1,2-diaminocyclohexane fragment in these complexes plays an instrumental role in anticancer activity.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacología , Ciclohexilaminas , ADN/química , División del ADN , Iones , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier , Agua , Zinc/química
6.
J Recept Signal Transduct Res ; 40(6): 605-612, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32476594

RESUMEN

Recently, a pathogen has been identified as a novel coronavirus (SARS-CoV-2) and found to trigger novel pneumonia (COVID-19) in human beings and some other mammals. The uncontrolled release of cytokines is seen from the primary stages of symptoms to last acute respiratory distress syndrome (ARDS). Thus, it is necessary to find out safe and effective drugs against this deadly coronavirus as soon as possible. Here, we downloaded the three-dimensional model of NSP10/NSP16 methyltransferase (PDB-ID: 6w6l) and main protease (PDB-ID: 6lu7) of COVID-19. Using these molecular models, we performed virtual screening with our anti-viral, inti-infectious, and anti-protease compounds, which are attractive therapeutics to prevent infection of the COVID-19. We found that top screened compound binds with protein molecules with good dock score with the help of hydrophobic interactions and hydrogen bonding. We observed that protease complexed with Cyclocytidine hydrochloride (anti-viral and anti-cancer), Trifluridine (anti-viral), Adonitol, and Meropenem (anti-bacterial), and Penciclovir (anti-viral) bound with a good docking score ranging from -6.8 to -5.1 (Kcal/mol). Further, NSP10/NSP16 methyltransferase complexed with Telbivudine, Oxytetracycline dihydrate (anti-viral), Methylgallate (anti-malarial), 2-deoxyglucose and Daphnetin (anti-cancer) from the docking score of -7.0 to -5.7 (Kcal/mol). In conclusion, the selected compounds may be used as a novel therapeutic agent to combat this deadly pandemic disease, SARS-CoV-2 infection, but needs further experimental research.HighlightsNSP10/NSP16 methyltransferase and main protease complex of SARS CoV-2 bind with selected drugs.NSP10/NSP16 methyltransferase and protease interacted with drugs by hydrophobic interactions.Compounds show good DG binging free energy with protein complexes.Ligands were found to follow the Lipinski rule of five.


Asunto(s)
Antivirales/química , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química , Aciclovir/análogos & derivados , Aciclovir/química , Aciclovir/uso terapéutico , Ancitabina/química , Ancitabina/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Guanina , Humanos , Meropenem/química , Meropenem/uso terapéutico , Metiltransferasas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/virología , Conformación Proteica/efectos de los fármacos , Ribitol/química , Ribitol/uso terapéutico , SARS-CoV-2 , Trifluridina/química , Trifluridina/uso terapéutico , Interfaz Usuario-Computador , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/ultraestructura , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/ultraestructura
7.
Sci Rep ; 9(1): 6912, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061500

RESUMEN

Iron oxide nanoparticles (IONPs) are known to induce cytotoxicity in various cancer cell lines through the generation of reactive oxygen species (ROS). However, the studies on its potential to induce toxicity in normal cell lines and in vivo system are limited and ambiguity still exists. Additionally, small molecules are known to interact with the DNA and cause damage to the DNA. The present study is designed to evaluate the potential interaction of IONPs with DNA along with their other toxicological effects and subsequent attenuation by thymoquinone both in vitro (primary lymphocytes) and in vivo (Wistar rats). IONPs were characterized by TEM, SEM-EDS, and XRD. The results from DNA interaction studies showed that IONPs formed a complex with DNA and also got intercalated between the base pairs of the DNA. The decrease in percent cell viability of rat's lymphocytes was observed along with an increase in ROS generation in a dose-dependent manner (50, 100, 200, 400 and 800 µg/ml of IONPs). The genetic damage in in vivo might be due to the generation of ROS as depletion in anti-enzymatic activity was observed along with an increase in lipid peroxidation in a dose-dependent manner (25, 50, 100 mg/kg of IONPs). Interestingly, supplementation of thymoquinone in combination with IONPs has significantly (P < 0.05) attenuated the genetic and oxidative damage in a dose-dependent manner both in vitro and in vivo. It can be concluded that thymoquinone has the potential to attenuate the oxidative stress and genetic toxicity in vitro and in vivo.


Asunto(s)
Benzoquinonas/farmacología , ADN/metabolismo , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Compuestos Férricos/antagonistas & inhibidores , Compuestos Férricos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Mutágenos/química , Mutágenos/metabolismo , Mutágenos/toxicidad , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA