Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925312

RESUMEN

Red cabbage (RC) and purple sweet potato (PSP) are naturally rich in acylated cyanidin glycosides that can bind metal ions and develop intramolecular π-stacking interactions between the cyanidin chromophore and the phenolic acyl residues. In this work, a large set of RC and PSP anthocyanins was investigated for its coloring properties in the presence of iron and aluminum ions. Although relatively modest, the structural differences between RC and PSP anthocyanins, i.e., the acylation site at the external glucose of the sophorosyl moiety (C2-OH for RC vs. C6-OH for PSP) and the presence of coordinating acyl groups (caffeoyl) in PSP anthocyanins only, made a large difference in the color expressed by their metal complexes. For instance, the Al3+-induced bathochromic shifts for RC anthocyanins reached ca. 50 nm at pH 6 and pH 7, vs. at best ca. 20 nm for PSP anthocyanins. With Fe2+ (quickly oxidized to Fe3+ in the complexes), the bathochromic shifts for RC anthocyanins were higher, i.e., up to ca. 90 nm at pH 7 and 110 nm at pH 5.7. A kinetic analysis at different metal/ligand molar ratios combined with an investigation by high-resolution mass spectrometry suggested the formation of metal-anthocyanin complexes of 1:1, 1:2, and 1:3 stoichiometries. Contrary to predictions based on steric hindrance, acylation by noncoordinating acyl residues favored metal binding and resulted in complexes having much higher molar absorption coefficients. Moreover, the competition between metal binding and water addition to the free ligands (leading to colorless forms) was less severe, although very dependent on the acylation site(s). Overall, anthocyanins from purple sweet potato, and even more from red cabbage, have a strong potential for development as food colorants expressing red to blue hues depending on pH and metal ion.


Asunto(s)
Antocianinas/química , Brassica/química , Ipomoea batatas/química , Pigmentos Biológicos/química , Acilación , Aluminio/química , Aluminio/metabolismo , Antocianinas/metabolismo , Brassica/metabolismo , Quelantes/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Color , Colorantes de Alimentos , Concentración de Iones de Hidrógeno , Iones/metabolismo , Ipomoea batatas/metabolismo , Hierro/química , Hierro/metabolismo , Cinética , Metales/metabolismo , Fenoles/metabolismo , Extractos Vegetales/química
2.
Food Chem ; 271: 497-504, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30236708

RESUMEN

Purple sweet potato, a source of acylated cyanidin and peonidin derivatives, is commercially available as a food colorant. Our objectives were to determine molar absorptivities (ε), spectral and colorimetric properties of purple sweet potato anthocyanins. Anthocyanins were isolated by semi-preparative HPLC, weighed, dried, and redissolved in acidic methanol or water. Anthocyanins were diluted in pH 1-9; ε, spectra, and color were measured on the methanolic and aqueous solutions. Higher ε were obtained in 0.1% HCl methanol (10,797-31,257 L/(mol × cm)) than in aqueous solution pH 1 (8861-24,303 L/(mol × cm)). Peonidin-3-sophoroside-5-glucoside had greatest ε in pH 1, but in alkaline pH, ε of acylated Peonidin-3-sophoroside-5-glucoside derivatives were greatest. Generally monoacylation decreased ε while diacylation increased ε. Location of acylation also affected ε of two Peonidin isomers (pH 1: 15,999 and 21,011 L/(mol × cm)). All anthocyanins expressed red-pink hues (330°-13.2°) in acidic pH and blues (230°-262°) in alkaline pH.


Asunto(s)
Antocianinas/química , Colorimetría/métodos , Colorantes de Alimentos/química , Ipomoea batatas/química , Cromatografía Líquida de Alta Presión , Diente Molar , Extractos Vegetales
3.
Food Res Int ; 106: 791-799, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29579988

RESUMEN

Grape skins or their by-products from wine production are rich sources of anthocyanins and various colorless phenolics, depending on the grape variety. Phenolics have strong antioxidant and anthocyanin stabilizing properties and help to produce functional anthocyanin colorants with improved stability. This study aimed to assess differences in color expression and stability of anthocyanin colorants from red grape varieties naturally copigmented and with different levels of purity and to compare them to synthetic FD&C Red No. 3. Model juice systems were prepared at pH 3.5 with anthocyanins and phenolic copigments extracted from four Vitis vinifera grape varieties ('Tempranillo', 'Syrah', 'C. Sauvignon', and 'Graciano') both crude and purified by C18 solid phase extraction. Attention was focused on differential colorimetry and phenolic composition related to the color. Degradation kinetics of total color were also studied during storage of 17 days in darkness at 25 °C. Grape variety significantly influenced pigment yield, proportion of acylation, and proportion of copigments:pigments ratios in crude extracts; purification modulated the copigment:pigment ratios. This proportion was related to perceptible color variability among colorants and to different stabilities. With the same pigment content, grape varieties richer in skin copigments and higher copigment/pigment ratios ('Syrah' and 'Tempranillo') produced more intensely colored crude extracts whose tonalities ranged from reddish ('Graciano') to red-bluish ('Syrah'), depending on the proportion of acylation. Increasing the purity of the pigments diminished the color variability due to variety, making them less vivid and visually more similar to one another and also to the synthetic colorant. Degradation kinetic studies showed that unpurified grape colorants had higher color stability over time, with the greatest stabilizing effects achieved with varieties richer in skin flavonols ('Tempranillo' and 'Syrah').


Asunto(s)
Antocianinas/análisis , Color , Vitis/química , Antioxidantes/análisis , Colorimetría , Flavonoles/análisis , Manipulación de Alimentos , Frutas/química , Fenoles/análisis , Extractos Vegetales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA