Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 9(12)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302474

RESUMEN

Hydroxytyrosol (HT) is an amphipathic functional phenol found in the olive tree, both in its leaves and fruits, in free or bound forms, as well as in olive oil and by-products of olive oil manufacture. The European Food Safety Authority recommends regular consumption of HT due to its several beneficial effects on human health, which are closely associated to its antioxidant activity. These reasons make HT an excellent candidate for application as a functional ingredient in the design of novel food products. Patents already exist for methodologies of extraction, purification, and application of HT in supplements and food products. The present review discusses the impact of HT incorporation on food properties and its effects on consumers, based on relevant data related to the use of HT as a functional ingredient, both as a pure compound or in the form of HT-rich extracts, in various food products, namely in edible oils, beverages, bakery products, as well animal-based foods such as meat, fishery and dairy products.

2.
Mar Drugs ; 17(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717174

RESUMEN

The effect of oven-drying at 25, 40 and 60 °C was evaluated on three macroalgae of relevance in Europe, namely Ulva rigida, Gracilaria sp. and Fucus vesiculosus, with respect to quality aspects, including their potential to be exploited as a source of valuable compounds. Notably, as compared to freeze-drying, oven-drying at 25 °C promoted the extraction of chlorophylls and carotenoids from U. rigida, as well as those of phycoerythrin and chlorophyll a from Gracilaria sp., while 40 °C favored the recovery of fucoxanthin and pheophytin a from F. vesiculosus. On the other hand, the use of oven-drying had a negative impact on the extraction of phenolic compounds from this alga, also diminishing the antioxidant activity of the resulting extracts. Instead, the impact of oven-drying of raw material on the recovery of specific polysaccharides differed among the macroalgae. While the amounts of ulvans and fucoidans obtained from macroalgae dried at higher temperatures tended to be superior, the recovery of agar was not affected with the drying temperatures applied to Gracilaria sp. The overall results showed that oven-drying might serve as a good alternative to stabilize Ulva rigida, Gracilaria sp. and Fucus vesiculosus, especially if extraction of pigments and polysaccharides is aimed, thought the appropriate temperature applied must be adapted for each macroalgae.


Asunto(s)
Fucus/química , Gracilaria/química , Extractos Vegetales/química , Ulva/química , Flavonoides/análisis , Liofilización , Fenoles/análisis , Feofitinas/análisis , Ficoeritrina/análisis , Extractos Vegetales/análisis , Polisacáridos/análisis , Xantófilas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA