Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 60(4): 2149-2159, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33522798

RESUMEN

The development of actinide decorporation agents with high complexation affinity, high tissue specificity, and low biological toxicity is of vital importance for the sustained and healthy development of nuclear energy. After accidental actinide intake, sequestration by chelation therapy to reduce acute damage is considered as the most effective method. In this work, a series of bis- and tetra-phosphonated pyridine ligands have been designed, synthesized, and characterized for uranyl (UO22+) decorporation. Owing to the absorption of the ligand and the luminescence of the uranyl ion, UV-vis spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS) were used to probe in situ complexation and structure variation of the complexes formed by the ligands with uranyl. Density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) spectroscopy on uranyl-ligand complexes revealed the coordination geometry around the uranyl center at pH 3 and 7.4. High affinity constants (log K ∼17) toward the uranyl ion were determined by displacement titration. A preliminary in vitro chelation study proves that bis-phosphonated pyridine ligands can remove uranium from calmodulin (CaM) at a low dose and in the short term, which supports further uranyl decorporation applications of these ligands.

2.
Chemistry ; 23(61): 15505-15517, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28869680

RESUMEN

Better understanding of uranyl-protein interactions is a prerequisite to predict uranium chemical toxicity in cells. The EF-hand motif of the calmodulin site I is about thousand times more affine for uranyl than for calcium, and threonine phosphorylation increases the uranyl affinity by two orders of magnitude at pH 7. In this study, we confront X-ray absorption spectroscopy with Fourier transform infrared (FTIR) spectroscopy, time-resolved laser-induced fluorescence spectroscopy (TRLFS), and structural models obtained by molecular dynamics simulations to analyze the uranyl coordination in the native and phosphorylated calmodulin site I. For the native site I, extended X-ray absorption fine structure (EXAFS) data evidence a short U-Oeq distance, in addition to distances compatible with mono- and bidentate coordination by carboxylate groups. Further analysis of uranyl speciation by TRLFS and thorough investigation of the fluorescence decay kinetics strongly support the presence of a hydroxide uranyl ligand. For a phosphorylated site I, the EXAFS and FTIR data support a monodentate uranyl coordination by the phosphoryl group and strong interaction with mono- and bidentate carboxylate ligands. This study confirms the important role of a phosphoryl ligand in the stability of uranyl-protein interactions. By evidencing a hydroxide uranyl ligand in calmodulin site I, this study also highlights the possible role of less studied ligands as water or hydroxide ions in the stability of protein-uranyl complexes.


Asunto(s)
Calmodulina/metabolismo , Complejos de Coordinación/metabolismo , Uranio/química , Secuencias de Aminoácidos , Sitios de Unión , Calmodulina/química , Complejos de Coordinación/química , Simulación de Dinámica Molecular , Paramecium tetraurelia/metabolismo , Fosforilación , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Absorción de Rayos X
3.
Chemistry ; 19(34): 11261-9, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23824755

RESUMEN

Herein, we describe the structural investigation of one possible uranyl binding site inside a nonstructured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phosphopeptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U LIII -edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO2 (2+) /peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein.


Asunto(s)
Osteopontina/química , Uranio/química , Durapatita/química , Iones/química , Modelos Moleculares , Osteopontina/metabolismo , Fosfopéptidos/química , Fosforilación , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Uranio/metabolismo
4.
Appl Spectrosc ; 57(8): 1027-38, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14661847

RESUMEN

Results of an inter-laboratory round-robin study of the application of time-resolved emission spectroscopy (TRES) to the speciation of uranium(VI) in aqueous media are presented. The round-robin study involved 13 independent laboratories, using various instrumentation and data analysis methods. Samples were prepared based on appropriate speciation diagrams and, in general, were found to be chemically stable for at least six months. Four different types of aqueous uranyl solutions were studied: (1) acidic medium where UO2(2+)aq is the single emitting species, (2) uranyl in the presence of fluoride ions, (3) uranyl in the presence of sulfate ions, and (4) uranyl in aqueous solutions at different pH, promoting the formation of hydrolyzed species. Results between the laboratories are compared in terms of the number of decay components, luminescence lifetimes, and spectral band positions. The successes and limitations of TRES in uranyl analysis and speciation in aqueous solutions are discussed.


Asunto(s)
Técnicas de Química Analítica/normas , Laboratorios/normas , Análisis Espectral/normas , Uranio , Cooperación Internacional , Control de Calidad , Reproducibilidad de los Resultados , Factores de Tiempo , Uranio/análisis , Uranio/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA