Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(1): 22, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008864

RESUMEN

Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.


Asunto(s)
6-Fitasa , Animales , 6-Fitasa/química , 6-Fitasa/metabolismo , Fermentación , Ácido Fítico/metabolismo , Fósforo , Minerales
2.
Int J Biol Macromol ; 253(Pt 4): 127017, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742902

RESUMEN

Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.


Asunto(s)
Hierro , Nanopartículas del Metal , Hierro/química , Nanopartículas del Metal/química , Bacterias/metabolismo , Sistemas de Liberación de Medicamentos , Biotecnología/métodos , Extractos Vegetales/química , Plantas/química , Tecnología Química Verde/métodos
3.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36763800

RESUMEN

Microbial phytases are potentially excellent candidates for eliminating anti-nutrient i.e. phytic acid, due to hydrolysis of phospho-monoester linkages present in the phytic acid. An average 2.29-fold increase in phytase production was obtained after statistical optimization in solid-state fermentation. Aspergillus oryzae SBS50 phytase was immobilized on a Ca-alginate matrix with an effectiveness of 53%. Immobilized-phytase retained > 50% activity after recycling for five cycles and also displayed more stability in the presence of organic solvents, metal ions, and detergents as compared to free enzyme. Values of Km and Vmax of immobilized phytase were recorded as 0.66 mM and 666.6 nmol/sec, respectively. Immobilized phytase efficiently hydrolyzed the phytate contents in wheat and pearl millet flours, exhibiting > 70% catalytic activity even after three cycles. Phytase supplementation resulted in the improved nutritional quality of these flours. Furthermore, the safety assessment of the treated and untreated samples reveals the absence of any aflatoxin in the phytase produced by the mould. The results revealed the improved stability of phytase after immobilization and as a safe and significant additive for application in the food industry.


Asunto(s)
6-Fitasa , Aspergillus oryzae , Ácido Fítico , Hidrólisis , Suplementos Dietéticos , Alimentación Animal
4.
Protein Pept Lett ; 28(10): 1083-1089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34303326

RESUMEN

BACKGROUND: Phytic acid acts as anti-nutritional factor in food and feed ingredients for monogastric animals as they lack phytases. OBJECTIVE: Phytase production by Bacillus subtilis subsp. subtilis JJBS250 was studied in solid-state fermentation and its applicability in dephytinization of food. METHODS: Bacterial culture was grown in solid state fermentation using wheat bran and various culture conditions were optimized using 'One variable at a time' (OVAT) approach. Effects of different substrates (wheat bran, wheat straw, sugarcane bagasse), incubation time (24, 48, 72 and 96 h), incubation temperatures (25, 30, 35 and 40°C), pH (4.0, 5.0, 6.0, 7.0 and 8.0) and moisture content (1:1.5, 1:2.0, 1:2.5 and 1:3) were studied on phytase production. Bacterial phytase was used in dephytinization of food samples. RESULTS: Optimization of phytase production was studied in solid state fermentation (SSF) using 'One variable at a time' (OVAT) approach. Bacillus subtilis subsp. subtilis JJBS250 grew well in various agroresidues in SSF and secreted high enzyme titres using wheat bran at 30°C and pH 5.0 after incubation time of 48 h with substrate to moisture ratio of 1:3. Glucose and ammonium sulphate supplementation to wheat bran further enhanced phytase production in SSF. Optimization of phytase production resulted in 2.4-fold improvement in phytase production in solid state fermentation. The enzyme resulted in dephytinization of wheat and rice flours with concomitant release of inorganic phosphate, reducing sugar and soluble protein. CONCLUSION: Optimization resulted in 2.34-fold enhancement in phytase production by bacterial culture that showed dephytinization of food ingredients with concomitant release of nutritional components. Therefore, phytase of B. subtilis subsp. subtilis JJBS250 could find application in improving nutritional quality of food and feed of monogastric animals.


Asunto(s)
6-Fitasa/biosíntesis , Técnicas de Cultivo de Célula/métodos , Sulfato de Amonio/metabolismo , Alimentación Animal , Bacillus , Biotecnología , Celulosa/metabolismo , Fibras de la Dieta/metabolismo , Fermentación , Glucosa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Saccharum/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA