Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35744989

RESUMEN

BACKGROUND: Himalayan Viola species (Banksha) are traditionally important herbs with versatile therapeutic benefits such as antitussive, analgesic, antipyretic, antimalarial, anti-inflammatory, and anticancerous ones. The current investigation was focused on exploring polyphenolic profiles, antioxidant, and antimicrobial potentials of wild viola species at 15 gradient locations (375-1829 m). METHODS: Morphological, physiochemical, and proximate analyses were carried out as per WHO guidelines for plant drug standardization. Total polyphenolic and flavonoid content were carried out using gallic acid and rutin equivalent. UPLC-DAD was used to profile the targeted polyphenols (gallic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, rutin, quercetin, luteolin, caffeic acid, and epicatechin). Similarly, all samples were screened for antioxidant and antimicrobial activity. Statistical analysis was used to correlate polyphenolic and targeted activities to assess Viola species adaptation behavior patterns. RESULTS: Viola canescens (V. canescens) and Viola pilosa (V. pilosa) were found abundantly at their respective sites. Among flowers and leaves, flowers of V. canescens and V. pilosa showed higher total polyphenolic and flavonoid content (51.4 ± 1.13 mg GAE/g and 65.05 ± 0.85 mg RE/g, and 33.26 ± 0.62 mg GAE/g and 36.10 ± 1.41 mg RE/g, respectively). Furthermore, UPLC-DAD showed the uppermost content of p-coumaric acid in flowers and ferulic acid in leaves, while rutin was significant in both the tissues. CONCLUSIONS: The adaptive behavior of Viola species showed variability in morphological characters with the altitudes, while targeted polyphenols and activities were significant at mid-altitudes. This research helps in the selection of right chemotype for agrotechnological interventions and the development of nutraceutical products.


Asunto(s)
Antiinfecciosos , Viola , Adaptación Psicológica , Antiinfecciosos/farmacología , Antioxidantes/química , Flavonoides/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Rutina , Especias/análisis , Viola/química
2.
Sci Rep ; 11(1): 14944, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294764

RESUMEN

Picrorhiza kurrooa is an endangered medicinal herb which is distributed across the Himalayan region at an altitude between 3000-5000 m above mean sea level. The medicinal properties of P. kurrooa are attributed to monoterpenoid picrosides present in leaf, rhizome and root of the plant. However, no genomic information is currently available for P. kurrooa, which limits our understanding about its molecular systems and associated responses. The present study brings the first assembled draft genome of P. kurrooa by using 227 Gb of raw data generated by Illumina and PacBio RS II sequencing platforms. The assembled genome has a size of n = ~ 1.7 Gb with 12,924 scaffolds. Four pronged assembly quality validations studies, including experimentally reported ESTs mapping and directed sequencing of the assembled contigs, confirmed high reliability of the assembly. About 76% of the genome is covered by complex repeats alone. Annotation revealed 24,798 protein coding and 9789 non-coding genes. Using the assembled genome, a total of 710 miRNAs were discovered, many of which were found responsible for molecular response against temperature changes. The miRNAs and targets were validated experimentally. The availability of draft genome sequence will aid in genetic improvement and conservation of P. kurrooa. Also, this study provided an efficient approach for assembling complex genomes while dealing with repeats when regular assemblers failed to progress due to repeats.


Asunto(s)
Mapeo Contig/métodos , Genoma de Planta , Picrorhiza/genética , Análisis de Secuencia de ADN/métodos , Especies en Peligro de Extinción , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas Medicinales/genética
3.
Crit Rev Biotechnol ; 37(6): 739-753, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27644897

RESUMEN

Podophyllotoxin is an aryltetralin lignan synthesized in several plant species, which is used in chemotherapies for cancers and tumor treatment. More potent semisynthetic derivatives of podophyllotoxin such as etoposide and teniposide are being developed and evaluated for their efficacy. To meet the ever increasing pharmaceutical needs, species having podophyllotoxin are uprooted extensively leading to the endangered status of selective species mainly Sinopodophyllum hexandrum. This has necessitated bioprospection of podophyllotoxin from different plant species to escalate the strain on this endangered species. The conventional and non-conventional mode of propagation and bioprospection with the integration of biotechnological interventions could contribute to sustainable supply of podophyllotoxin from the available plant resources. This review article is focused on the understanding of different means of propagation, development of genomic information, and its implications for elucidating podophyllotoxin biosynthesis and metabolic engineering of pathways. In addition, various strategies for sustainable production of this valuable metabolite are also discussed, besides a critical evaluation of future challenges and opportunities for the commercialization of podophyllotoxin.


Asunto(s)
Biotecnología , Hongos , Podofilotoxina , Podophyllum
4.
J Environ Biol ; 31(6): 945-51, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21506480

RESUMEN

A preliminary investigation was conducted to assess lignocellulolytic efficiency of crude extracts from three white-rot fungi, Pleurotus florida PF05 (PF), Pleurotus sajor-caju PS07 (PS) and Pleurotus eryngii PE08 (PE). The activities of CMC-ase, xylanase, beta-glucosidase, beta-xylosidase, laccase and Mn peroxidase in extracts were evaluated. PF produced its highest CMC-ase (317 UL(-1)'), beta-glucosidase (62 UL(-1)), beta-xylosidase (37 UL(-1)) and laccase (347 UL(-1)) activities while, PS produced highest xylanase (269 UL-(1)) and Mn peroxidase (69 UL(-1)) activities. In addition, crude extracts extracted were employed for their in vitro degradability assessment; and were evaluated with mono and mixed extracts separately to corn cob substrate. The losses in cell wall components and dry matter during 5 and 10 days incubations were analyzed after treatments of extracts. Maximum 8.2, 4.4 and 2.8% loss were found respectivelyin hemicellulose (HC), cellulose (C) and lignin (L) with mono extract of PF within 10 days. The influence of mono extract of each strain (PF PS and PE) and their mixed extracts (PF+PS, PF+PE, PS+PE and PF+PS+PE) on degradation of cell wall constituents were remarkably differed. The mixed extract treatment proved maximum 13.6% HC loss by PF+PS+PE extract, 9.2% loss in C by PF+PS extract and 5.2% loss of L by the PF+PS+PE extract treatment. The highest dry matter loss (8.2%) was recorded with PF+PS+PE mixed extract combination.


Asunto(s)
Extractos Vegetales/química , Pleurotus/química , Pleurotus/enzimología , Pared Celular/metabolismo
5.
Genome ; 49(1): 91-6, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16462906

RESUMEN

Variability in the organization of repeats of 5S rDNA is useful for phylogenetic studies in various crops. We found variable repeats of 5S rDNA gene in the genome of tea (Camellia sinensis (L.) O. Kuntze) during Southern hybridization. Variability in the repeats of 5S rDNA with specific restriction endonucleases (Sau3AI, BamHI, and ApoI) was analyzed in 28 different tea clones representing 3 types of tea. Our results clearly show that the 5S rDNA gene in tea could be used as a molecular marker to distinguish C. sinensis Chinary tea from the other important types of tea, namely Assamica and Cambod. Upon analysis with restriction endonucleases, the 5S rDNA gene in the tea genome was found to be heavily methylated.


Asunto(s)
Camellia sinensis/clasificación , Camellia sinensis/genética , ADN Ribosómico/análisis , ARN Ribosómico 5S/genética , Metilación de ADN , ADN Ribosómico/metabolismo , Genes de Plantas , Variación Genética , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA