Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Direct ; 5(9): e343, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34514289

RESUMEN

Plant oil production has been increasing continuously in the past decade. There has been significant investment in the production of high biomass plants with elevated oil content. We recently showed that the expression of Arabidopsis thaliana WRI1 and DGAT1 genes increase oil content by up to 15% in leaf dry weight tissue. However, triacylglycerols in leaf tissue are subject to degradation during senescence. In order to better package the oil, we expressed a series of lipid droplet proteins isolated from bacterial and plant sources in Nicotiana benthamiana leaf tissue. We observed further increases in leaf oil content of up to 2.3-fold when we co-expressed Sesamum indicum Oleosin L with AtWRI1 and AtDGAT1. Biochemical assays and lipid droplet visualization with confocal microscopy confirmed the increase in oil content and revealed a significant change in the size and abundance of lipid droplets.

2.
Plant Cell Physiol ; 61(7): 1335-1347, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32379869

RESUMEN

Alpha-linolenic acid (ALA, 18:3Δ9,12,15) and γ-linolenic acid \ (GLA, 18:3Δ6,9,12) are important trienoic fatty acids, which are beneficial for human health in their own right, or as precursors for the biosynthesis of long-chain polyunsaturated fatty acids. ALA and GLA in seed oil are synthesized from linoleic acid (LA, 18:2Δ9,12) by the microsomal ω-3 fatty acid desaturase (FAD3) and Δ6 desaturase (D6D), respectively. Cotton (Gossypium hirsutum L.) seed oil composition was modified by transforming with an FAD3 gene from Brassica napus and a D6D gene from Echium plantagineum, resulting in approximately 30% ALA and 20% GLA, respectively. The total oil content in transgenic seeds remained unaltered relative to parental seeds. Despite the use of a seed-specific promoter for transgene expression, low levels of GLA and increased levels of ALA were found in non-seed cotton tissues. At low temperature, the germinating cottonseeds containing the linolenic acid isomers elongated faster than the untransformed controls. ALA-producing lines also showed higher photosynthetic rates at cooler temperature and better fiber quality compared to both untransformed controls and GLA-producing lines. The oxidative stability of the novel cottonseed oils was assessed, providing guidance for potential food, pharmaceutical and industrial applications of these oils.


Asunto(s)
Fibra de Algodón , Aceite de Semillas de Algodón/metabolismo , Germinación/genética , Gossypium/genética , Fotosíntesis/genética , Semillas/crecimiento & desarrollo , Ácido alfa-Linolénico/metabolismo , Ácido gammalinolénico/metabolismo , Brassica napus/genética , Respuesta al Choque por Frío , Fibra de Algodón/normas , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ingeniería Genética , Gossypium/metabolismo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Ácido alfa-Linolénico/genética , Ácido gammalinolénico/genética
3.
Bioelectromagnetics ; 41(3): 175-187, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31944364

RESUMEN

Alternative bone regeneration strategies that do not rely on harvested tissue or exogenous growth factors are needed. One of the major challenges in tissue reconstruction is recreating the bone tissue microenvironment using the appropriate combination of cells, scaffold, and stimulation to direct differentiation. This study presents a bone regeneration formulation that involves the use of human adipose-derived mesenchymal stem cells (hASCs) and a three-dimensional (3D) hydrogel scaffold based on self-assembled RADA16 peptides containing superparamagnetic iron oxide nanoparticles (NPs). Although superparamagnetic NPs could be used as stimulus to manipulate the cell proliferation and differentiation, in this paper their use is explored for assisting osteogenic differentiation of hASCs in conjunction with direct stimulation by extremely low-frequency pulsed electromagnetic fields (pEMFs). Cellular morphology, proliferation, and viability, as well as alkaline phosphatase activity, calcium deposition, and osteogenic capacity were monitored for cells cultured up to 21 days in the 3D construct. The results show that the pEMFs and NPs do not have any negative effect on cell viability, but instead distinctly induced early differentiation of hASCs to an osteoblastic phenotype, when compared with cells without biophysical stimulation. This effect is attributed to synergy between the pEMFs and NPs, which may have stimulated mechanotransduction pathways, which, in turn activated biochemical signals between cells to differentiate or proliferate. This approach may offer a safe and effective option for the treatment of non-union bone fractures. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.


Asunto(s)
Campos Electromagnéticos , Células Madre Mesenquimatosas/citología , Andamios del Tejido , Fosfatasa Alcalina/metabolismo , Regeneración Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Hidrogeles , Nanopartículas Magnéticas de Óxido de Hierro/química , Células Madre Mesenquimatosas/fisiología , Osteoblastos/citología , Osteoblastos/fisiología , Osteogénesis , Péptidos/química
4.
Prog Lipid Res ; 74: 103-129, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30822461

RESUMEN

The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.


Asunto(s)
Biomasa , Ingeniería Metabólica , Aceites de Plantas/metabolismo , Triglicéridos/metabolismo
5.
Plant Biotechnol J ; 17(1): 220-232, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873878

RESUMEN

Synthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C4 photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C3 model plant tobacco, progress in C4 monocot crops has been lagging behind. In this study, we report the accumulation of triacylglycerol in sorghum leaf tissues to levels between 3 and 8.4% on a dry weight basis depending on leaf and plant developmental stage. This was achieved by the combined overexpression of genes encoding the Zea mays WRI1 transcription factor, Umbelopsis ramanniana UrDGAT2a acyltransferase and Sesamum indicum Oleosin-L oil body protein. Increased oil content was visible as lipid droplets, primarily in the leaf mesophyll cells. A comparison between a constitutive and mesophyll-specific promoter driving WRI1 expression revealed distinct changes in the overall leaf lipidome as well as transitory starch and soluble sugar levels. Metabolome profiling uncovered changes in the abundance of various amino acids and dicarboxylic acids. The results presented here are a first step forward towards the development of sorghum as a dedicated biomass oil crop and provide a basis for further combinatorial metabolic engineering.


Asunto(s)
Lípidos/biosíntesis , Hojas de la Planta/metabolismo , Aceites de Plantas/análisis , Sorghum/metabolismo , Aminoácidos/análisis , Aminoácidos/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Hojas de la Planta/química , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sorghum/química , Almidón/análisis , Almidón/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba
6.
Plant Biotechnol J ; 16(10): 1788-1796, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29509999

RESUMEN

Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry.


Asunto(s)
Carthamus tinctorius/metabolismo , Ácidos Oléicos/metabolismo , Interferencia de ARN , Aceite de Cártamo/química , Semillas/metabolismo , Carthamus tinctorius/genética , Oxidación-Reducción
7.
Plant Biotechnol J ; 15(11): 1397-1408, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28301719

RESUMEN

Medium-chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA-dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.


Asunto(s)
Arecaceae/genética , Arecaceae/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/metabolismo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Arabidopsis/genética , Arecaceae/enzimología , Biomasa , Muerte Celular , Cinnamomum camphora/genética , Cocos/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Láuricos/metabolismo , Metabolismo de los Lípidos , Lípidos de la Membrana/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma , Triglicéridos
8.
Plant Biotechnol J ; 15(1): 132-143, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381745

RESUMEN

Palmitic acid (C16:0) already makes up approximately 25% of the total fatty acids in the conventional cotton seed oil. However, further enhancements in palmitic acid content at the expense of the predominant unsaturated fatty acids would provide increased oxidative stability of cotton seed oil and also impart the high melting point required for making margarine, shortening and confectionary products free of trans fatty acids. Seed-specific RNAi-mediated down-regulation of ß-ketoacyl-ACP synthase II (KASII) catalysing the elongation of palmitoyl-ACP to stearoyl-ACP has succeeded in dramatically increasing the C16 fatty acid content of cotton seed oil to well beyond its natural limits, reaching up to 65% of total fatty acids. The elevated C16 levels were comprised of predominantly palmitic acid (C16:0, 51%) and to a lesser extent palmitoleic acid (C16:1, 11%) and hexadecadienoic acid (C16:2, 3%), and were stably inherited. Despite of the dramatic alteration of fatty acid composition and a slight yet significant reduction in oil content in these high-palmitic (HP) lines, seed germination remained unaffected. Regiochemical analysis of triacylglycerols (TAG) showed that the increased levels of palmitic acid mainly occurred at the outer positions, while C16:1 and C16:2 were predominantly found in the sn-2 position in both TAG and phosphatidylcholine. Crossing the HP line with previously created high-oleic (HO) and high-stearic (HS) genotypes demonstrated that HP and HO traits could be achieved simultaneously; however, elevation of stearic acid was hindered in the presence of high level of palmitic acid.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Aceite de Semillas de Algodón/análisis , Regulación hacia Abajo , Mejoramiento Genético , Gossypium/enzimología , Gossypium/genética , Ácido Palmítico/análisis , Interferencia de ARN , Agrobacterium tumefaciens/genética , Secuencia de Bases , Aceite de Semillas de Algodón/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Ácidos Grasos Monoinsaturados/química , Silenciador del Gen , Genes de Plantas , Vectores Genéticos , Genotipo , Germinación , Lípidos/análisis , Lípidos/química , Estrés Oxidativo , Ácido Palmítico/química , Fosfatidilcolinas/análisis , Filogenia , Aceites de Plantas/análisis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Alineación de Secuencia , Ácidos Esteáricos/análisis , Transformación Genética , Triglicéridos/análisis
9.
Metab Eng ; 39: 237-246, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993560

RESUMEN

Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops.


Asunto(s)
Mejoramiento Genético/métodos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología , Nicotiana/fisiología , Hojas de la Planta/fisiología , Aceites de Plantas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Aceites de Plantas/aislamiento & purificación , Factores de Transcripción/genética
10.
Sci Rep ; 6: 28298, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27324083

RESUMEN

As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Brassica napus/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/genética , Semillas/crecimiento & desarrollo , Adaptación Fisiológica , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Ascomicetos/fisiología , Vías Biosintéticas , Brassica napus/genética , Brassica napus/metabolismo , Brasinoesteroides/biosíntesis , Sistema Enzimático del Citocromo P-450/biosíntesis , Deshidratación/genética , Deshidratación/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mejoramiento Genético , Enfermedades de las Plantas/microbiología , Aceites de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Semillas/genética , Semillas/metabolismo , Transcriptoma
11.
Plant Cell Physiol ; 57(1): 125-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26589268

RESUMEN

Chinese tallow (Triadica sebifera) is a valuable oilseed-producing tree that can grow in a variety of conditions without competing for food production, and is a promising biofuel feedstock candidate. The fruits are unique in that they contain both saturated and unsaturated fat present in the tallow and seed layer, respectively. The tallow layer is poorly studied and is considered only as an external fatty deposition secreted from the seed. In this study we show that tallow is in fact a non-seed cellular tissue capable of triglyceride synthesis. Knowledge of lipid synthesis and storage mechanisms in tissues other than seed is limited but essential to generate oil-rich biomass crops. Here, we describe the annotated transcriptome assembly generated from the fruit coat, tallow and seed tissues of Chinese tallow. The final assembly was functionally annotated, allowing for the identification of candidate genes and reconstruction of lipid pathways. A tallow tissue-specific paralog for the transcription factor gene WRINKLED1 (WRI1) and lipid droplet-associated protein genes, distinct from those expressed in seed tissue, were found to be active in tallow, underpinning the mode of oil synthesis and packaging in this tissue. Our data have established an excellent knowledge base that can provide genetic and biochemical insights for engineering non-seed tissues to accumulate large amounts of oil. In addition to the large data set of annotated transcripts, the study also provides gene-based simple sequence repeat and single nucleotide polymorphism markers.


Asunto(s)
Euphorbiaceae/genética , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Transcriptoma , Biocombustibles , Euphorbiaceae/metabolismo , Euphorbiaceae/ultraestructura , Ácidos Grasos/análisis , Frutas/genética , Frutas/metabolismo , Frutas/ultraestructura , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Metabolismo de los Lípidos , Lípidos/análisis , Anotación de Secuencia Molecular , Especificidad de Órganos , Aceites de Plantas/análisis , Proteínas de Plantas/genética , Semillas/genética , Semillas/metabolismo , Semillas/ultraestructura , Análisis de Secuencia de ADN
12.
Plant Biotechnol J ; 14(6): 1418-26, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26628000

RESUMEN

Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA-guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co-evolved viral silencing-suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA-regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three-step transgenic pathway for the synthesis of arachidonic acid (AA), an ω-6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP-AA-transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application.


Asunto(s)
Arabidopsis/genética , Silenciador del Gen , Ingeniería Genética , Redes y Vías Metabólicas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácido Araquidónico/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Proteínas Virales/genética
13.
Nutrients ; 6(3): 1063-79, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24618601

RESUMEN

Seafood consumption enhances intake of omega-3 long-chain (≥C20) polyunsaturated fatty acids (termed LC omega-3 oils). Humans biosynthesize only small amounts of LC-omega-3, so they are considered semi-essential nutrients in our diet. Concern has been raised that farmed fish now contain lower LC omega-3 content than wild-harvested seafood due to the use of oil blending in diets fed to farmed fish. However, we observed that two major Australian farmed finfish species, Atlantic salmon (Salmo salar) and barramundi (Lates calcifer), have higher oil and LC omega-3 content than the same or other species from the wild, and remain an excellent means to achieve substantial intake of LC omega-3 oils. Notwithstanding, LC omega-3 oil content has decreased in these two farmed species, due largely to replacing dietary fish oil with poultry oil. For Atlantic salmon, LC omega-3 content decreased ~30%-50% between 2002 and 2013, and the omega-3/omega-6 ratio also decreased (>5:1 to <1:1). Australian consumers increasingly seek their LC omega-3 from supplements, therefore a range of supplement products were compared. The development and future application of oilseeds containing LC omega-3 oils and their incorporation in aquafeeds would allow these health-benefitting oils to be maximized in farmed Australian seafood. Such advances can assist with preventative health care, fisheries management, aquaculture nutrition, an innovative feed/food industry and ultimately towards improved consumer health.


Asunto(s)
Ácidos Grasos Omega-3/análisis , Alimentos Marinos/análisis , Alimentación Animal/análisis , Animales , Acuicultura/métodos , Australia , Dieta/veterinaria , Ácidos Grasos/análisis , Aceites de Pescado/administración & dosificación , Aceites de Pescado/análisis , Peces
14.
Nutrients ; 6(2): 776-89, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24566436

RESUMEN

New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16-C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.


Asunto(s)
Brassicaceae/química , Ácidos Grasos Omega-3/análisis , Aceites de Plantas/química , Semillas/química , Colestadienoles/análisis , Colesterol/análogos & derivados , Colesterol/análisis , Cromatografía de Gases y Espectrometría de Masas , Fosfolípidos/análisis , Fitosteroles/análisis , Plantas Modificadas Genéticamente/química , Sitoesteroles/análisis , Estigmasterol/análogos & derivados , Estigmasterol/análisis , Triglicéridos/análisis
15.
Plant Biotechnol J ; 12(2): 231-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24151938

RESUMEN

High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ingeniería Metabólica , Nicotiana/metabolismo , Aceites de Plantas/metabolismo , Triglicéridos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biocombustibles , Biomasa , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Expresión Génica , Fenotipo , Hojas de la Planta/metabolismo , Aceites de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Tiempo , Nicotiana/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes , Triglicéridos/análisis
16.
FEBS Lett ; 587(4): 364-9, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23313251

RESUMEN

Metabolic engineering approaches to increase plant oil levels can generally be divided into categories which increase fatty acid biosynthesis ('Push'), are involved in TAG assembly ('Pull') or increase TAG storage/decrease breakdown ('Accumulation'). In this study, we describe the surprising synergy when Push (WRI1) and Pull (DGAT1) approaches are combined. Co-expression of these genes in the Nicotiana benthamiana transient leaf expression system resulted in TAG levels exceeding those expected from an additive effect and biochemical tracer studies confirmed increased flux of carbon through fatty acid and TAG synthesis pathways. Leaf fatty acid profile also synergistically shifts from polyunsaturated to monounsaturated fatty acids.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Diacilglicerol O-Acetiltransferasa/biosíntesis , Ácidos Grasos/biosíntesis , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/biosíntesis , Triglicéridos/biosíntesis , Proteínas de Arabidopsis/genética , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/biosíntesis , Nicotiana/enzimología , Factores de Transcripción/genética , Triglicéridos/metabolismo , Regulación hacia Arriba
17.
Plant Biotechnol J ; 11(2): 197-210, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23190163

RESUMEN

Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.


Asunto(s)
Alimentación Animal , Ingeniería Metabólica , Aceites de Plantas/metabolismo , Ceras/metabolismo , Ácidos Grasos/biosíntesis , Plantas/metabolismo
18.
Anal Chim Acta ; 737: 1-21, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22769031

RESUMEN

Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review highlights recent advances in various approaches towards synthesis of ZnO nanostructures and thin films and their applications in biosensor technology.


Asunto(s)
Técnicas Biosensibles/instrumentación , Nanoestructuras/química , Nanotecnología/instrumentación , Óxido de Zinc/química , Animales , Técnicas Biosensibles/métodos , Colesterol/análisis , ADN/análisis , Técnicas Electroquímicas/instrumentación , Glucosa/análisis , Humanos , Peróxido de Hidrógeno/análisis , Inmunoglobulinas/análisis , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Conejos
19.
PLoS One ; 7(4): e35214, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22523576

RESUMEN

BACKGROUND: Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.


Asunto(s)
Aciltransferasas/metabolismo , Triglicéridos/biosíntesis , Animales , Arabidopsis/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerofosfatos/metabolismo , Redes y Vías Metabólicas , Ratones , Monoglicéridos/metabolismo , Saccharomyces cerevisiae/enzimología , Nicotiana/enzimología
20.
Mar Biotechnol (NY) ; 11(3): 410-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18987913

RESUMEN

The marine microalga Pavlova salina (Haptophyta, Pavlovophyceae) produces lipids containing approximately 50% n-3 long-chain polyunsaturated fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A full-length cDNA sequence, designated PsElo5, was isolated from P. salina. Sequence alignment showed that the gene was homologous to corresponding ELO-type elongases from other microalgae. Heterologous expression of PsElo5 in yeast and in higher plants confirmed that it encodes a specific Delta5-elongase activity as predicted and, furthermore, within the n-3 pathway, the elongation activity was confined exclusively to EPA.


Asunto(s)
Acetiltransferasas/genética , Eucariontes/enzimología , Ácidos Grasos Insaturados/metabolismo , Acetiltransferasas/metabolismo , Arabidopsis , Secuencia de Bases , Cartilla de ADN/genética , ADN Complementario/genética , Elongasas de Ácidos Grasos , Ácidos Grasos Insaturados/biosíntesis , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Levaduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA