Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Trace Elem Med Biol ; 80: 127305, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778095

RESUMEN

BACKGROUND: A balanced diet containing selenium (Se) and other trace elements is essential for normal development and growth. Se has been recognized as an essential trace element; however, its interaction with other elements has not been fully investigated. In the present study, sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), Se and rubidium (Rb), were analysed in liver and brain regions under altered dietary Se intake in weanling mice to identify major discriminatory elements. METHODS: The study investigated the effects of different levels of Se intake on the elemental composition in liver and brain tissues of weaned mice. After 24 weeks of feeding with Se adequate, deficient, and excess diets, elemental analysis was performed on the harvested tissues using Inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis that included analysis of covariance (ANCOVA), correlation coefficient analysis, principal component analysis, and partial least squares discriminant analysis were performed. RESULTS: The ANCOVA showed statistically significant changes and correlations among the analysed elements under altered dietary Se status. The multivariate analysis showed differential changes in elements in liver and brain regions. The results suggest that long-term dietary Se alternations lead to dyshomeostasis in trace elements that are required in higher concentrations compared to Se. It was observed that changes in the Fe, Co, and Rb levels were similar in all the tissues studied, whereas the changes in Mg, Cr, and Mn levels were different among the tissues under altered dietary Se status. Additionally, the changes in Rb levels correlated with the dietary Se intake but had no relation with the tissue Se levels. CONCLUSIONS: The findings suggest interactions between Mg, Cr, Mn, Fe, Co, and Se under altered Se status may impact cellular functions during postnatal development. However, the possible biological significance of alterations in Rb levels under different dietary Se paradigms needs to be further explored.


Asunto(s)
Selenio , Oligoelementos , Ratones , Animales , Oligoelementos/análisis , Magnesio , Manganeso , Cromo , Cobre , Cobalto , Rubidio , Hígado/química , Encéfalo , Sodio
2.
Front Plant Sci ; 14: 1249230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37794928

RESUMEN

Maize (Zea mays) is the most important coarse cereal utilized as a major energy source for animal feed and humans. However, maize grains are deficient in methionine, an essential amino acid required for proper growth and development. Synthetic methionine has been used in animal feed, which is costlier and leads to adverse health effects on end-users. Bio-fortification of maize for methionine is, therefore, the most sustainable and environmental friendly approach. The zein proteins are responsible for methionine deposition in the form of δ-zein, which are major seed storage proteins of maize kernel. The present review summarizes various aspects of methionine including its importance and requirement for different subjects, its role in animal growth and performance, regulation of methionine content in maize and its utilization in human food. This review gives insight into improvement strategies including the selection of natural high-methionine mutants, molecular modulation of maize seed storage proteins and target key enzymes for sulphur metabolism and its flux towards the methionine synthesis, expression of synthetic genes, modifying gene codon and promoters employing genetic engineering approaches to enhance its expression. The compiled information on methionine and essential amino acids linked Quantitative Trait Loci in maize and orthologs cereals will give insight into the hotspot-linked genomic regions across the diverse range of maize germplasm through meta-QTL studies. The detailed information about candidate genes will provide the opportunity to target specific regions for gene editing to enhance methionine content in maize. Overall, this review will be helpful for researchers to design appropriate strategies to develop high-methionine maize.

3.
Cancer Rep (Hoboken) ; 6(11): e1863, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37489647

RESUMEN

BACKGROUND AND AIM: There is an increased risk of colon cancer associated with inflammatory bowel disease (IBD). Dietary fibers (DFs) naturally present in vegetables and whole grains offer numerous beneficial effects on intestinal health. However, the effects of refined DFs on intestinal health remain unclear. Therefore, we elucidated the impact of the refined DF inulin on colonic inflammation and tumorigenesis. METHODS: Four-week-old wild-type (WT) mice were fed diets containing insoluble DF cellulose (control) or refined DF inulin for 4 weeks. A subgroup of mice was then switched to drinking water containing dextran sulfate sodium (DSS, 1.4% wt/vol) for colitis induction. In another subgroup of mice, colitis-associated colorectal cancer (CRC) was initiated with three 7-day alternate cycles of DSS following an initial dose of mutagenic substance azoxymethane (AOM; 7.5 mg/kg body weight; i.p.). Post 7 weeks of AOM treatment, mice were euthanized and examined for CRC development. RESULTS: Mice consuming inulin-containing diet exhibited severe colitis upon DSS administration, as evidenced by more body weight loss, rectal bleeding, and increased colonic inflammation than the DSS-treated control group. Correspondingly, histological analysis revealed extensive disruption of colon architecture and massive infiltration of immune cells in the inulin-fed group. We next examined the effect of inulin on CRC development. Surprisingly, significant mortality (~50%) was observed in the inulin-fed but not in the control group during the DSS cycle. Consequently, the remaining inulin-fed mice, which completed the study exhibited extensive colon tumorigenesis. Immunohistochemical characterization showed comparatively high expression of the cell proliferation marker Ki67 and activation of the Wnt signaling in tumor sections obtained from the inulin-fed group. Gut microbiota and metabolite analysis revealed expansion of succinate producers and elevated cecal succinate in inulin-fed mice. Human colorectal carcinoma cells (HCT116) proliferated more rapidly when supplemented with succinate in an inflamed environment, suggesting that elevated luminal succinate may contribute to tumorigenesis. CONCLUSIONS: Our study uncovers that supplementation of diet with refined inulin induces abnormal succinate accumulation in the intestinal lumen, which in part contributes to promoting colon inflammation and tumorigenesis.


Asunto(s)
Colitis , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Animales , Ratones , Inulina , Ácido Succínico , Sulfato de Dextran/toxicidad , Inflamación/complicaciones , Inflamación/patología , Colitis/complicaciones , Colitis/metabolismo , Colitis/patología , Neoplasias del Colon/inducido químicamente , Neoplasias Colorrectales/inducido químicamente , Carcinogénesis , Transformación Celular Neoplásica
4.
Crit Rev Biotechnol ; 43(5): 665-679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35658771

RESUMEN

Microalgae are the promising source of products having a low and high economic value that include feedstock and vitamin supplements. Presently, their cultivation is being carried out by using sunlight in the open raceway ponds. However, this process has disadvantages like fluctuations in irradiance of the sunlight due to climatic changes and bad weather. Artificial lights, exploiting light-emitting diodes are beneficial in increasing the volumetric productivity of the microalgal biomass as it provides continuous illumination in the photobioreactors and assist in the external and internal design. However, the application of light-emitting diodes accrues high input costs. Though the cost of light-emitting diodes was estimated long ago, there is no recent economic analysis of the same. This study aims to enlist the applications of light-emitting diodes in microalgal cultivation with reference to internally illuminated photobioreactors coupled with the evaluation of the cost and energy balance of the artificial lights. The calculation shows that the electrical energy cost incurred during the application of light-emitting diodes for microalgae cultivation is approximately USD 15.19 kg-1 DW. The collective fraction of electrical energy transformed into chemical energy (microalgae biomass) is around 6-8%. The cost of the light-emitting diodes can be decreased by the application of an Arduino-based automated control system to control the power supply to LEDs, photovoltaic powered photobioreactors and additional light. These techniques of input cost reduction have also been explored deeply in the present study. As estimated, they can reduce the cost of light-emitting diodes by 50%.HighlightsDiscussion on the current application of light-emitting diodes for microalgae cultivationA broad discussion on internally illuminated photobioreactors and their modificationsMicroalgae cultivation cost exploiting LEDs' is around USD 15.19 kg-1 DWNet conservation of electrical energy during the cultivation process is 6-8%Photovoltaic powered PBRs and Arduino microcontrollers will decrease cultivation cost.


Asunto(s)
Microalgas , Fotobiorreactores , Biomasa
5.
Biologia (Bratisl) ; 77(5): 1373-1389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250036

RESUMEN

The COVID-19 infection by Novel Corona Virus (SARS-CoV-2) has become one of the largest pandemic diseases, with cumulative confirmed infections of 275,233,892 and 5,364,996 deaths to date according to World Health Organization. Due to the absence of any approved antiviral drug to treat COVID-19, its lethality is getting severe with time. The main protease of SARS-CoV-2, Mpro is considered one of the potential drug targets because of its role in processing proteins translated from viral RNA. In the present study, four of the plant metabolites, 14-deoxy-11,12-didehydroandrographolide, andrograpanin, quinine, cinchonine from two eminent medicinal plants Andrographis paniculata and Cinchona officinalis, have been evaluated against the main protease of SARS-CoV-2 through in-silico molecular docking and molecular dynamics simulation study. From the result interpretations, it is found that andrograpanin has strong binding affinities with the target protein in its active site with potential negative energies. Molecular Dynamic simulation and MMGBSA studies suggest that earlier reported N3 inhibitor and andrograpanin exhibit effective binding interactions involving identical amino acid residues with the same binding pockets of the main protease of SARS-CoV-2. Therefore, the theoretical experiment suggests that andrograpanin, could be considered the promising inhibitor against SARS-CoV-2 Mpro. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11756-022-01012-y.

6.
Comput Biol Med ; 134: 104462, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34148008

RESUMEN

BACKGROUND: Chlorogenic acid is amongst the well-known polyphenolic compounds being used in human food and beverages. Its presence has been reported in tea leaves, roasted green beans, coffee, cocoa, berry fruits, apples, citrus fruits, and pears. OBJECTIVE: The present study aims to elucidate the effectiveness of chlorogenic acid on in silico and in vitro inhibition of glucose metabolising enzymes (α-amylase and α-glucosidase) and on blood-based markers associated with diabetic complications in vivo. METHODS: Docking and molecular dynamics studies were performed using GLIDE (Schrodinger, LLC, NY, 2019-2) and Maestro-Desmond Interoperability Tools, version 4.1 (Schrödinger, NY, 2015), respectively. α-Amylase and α-glucosidase inhibitory activities of chlorogenic acid were measured in vitro. Diabetes was induced in adult Wistar rats by injecting streptozotocin (50 mg/kg). Biochemical assays were performed using standard kits. RESULT: The in silico studies for α-amylase and α-glucosidase with chlorogenic acid suggested that the ligand was stable and strongly bound with the above-mentioned proteins. During in vitro studies, chlorogenic acid inhibited both the enzymes in a dose-dependent manner (5-30 µg/mL). In addition, chlorogenic acid treatment for 28 days significantly suppressed the increase in blood glucose, total cholesterol, triglyceride, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, γ-glutamyl transferase, alkaline phosphatase, total bilirubin, creatinine, urea, uric acid, and feed intake levels in diabetic rats. Chlorogenic acid also caused significant improvement in body weight, serum HDL-cholesterol, total protein, and albumin levels leading to betterment in atherogenic indices related to diabetes-associated cardiovascular risks. CONCLUSION: The findings indicated that chlorogenic acid inhibited α-amylase and α-glucosidase and significantly decreased diabetes associated hyperglycemia, hyperlipidemia, and hepatorenal damage, making it a possible functional food ingredient and drug candidate for the management of diabetes and related complications.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes , Animales , Ácido Clorogénico/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales , Ratas , Ratas Wistar , Estreptozocina/toxicidad
7.
ACS Appl Bio Mater ; 4(10): 7467-7484, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35006707

RESUMEN

Iron deficiency anemia (IDA) is the most common nutritional disorder worldwide nearly affecting two billion people. The efficacies of conventional oral iron supplements are mixed, intravenous iron administration acquaintances with finite but crucial risks. Usually, only 5-20% iron is absorbed in the duodenum while the remaining fraction reaches the colon, affecting the gut microbes and can significantly impact intestinal inflammatory responses. Therefore, administration of gut bacterial modulators such as probiotics, prebiotics, and any other dietary molecules that can stimulate healthy gut bacteria can enhance iron absorption without any adverse side effects. In this study, we have prepared an iron supplement to avoid the side effects of conventional oral iron supplements. The formulation includes co-encapsulation of iron with anti-inflammatory probiotic bacteria within alginate/starch hydrogels (B + I-Dex (H)), which has been demonstrated to be efficient in mitigating IDA in vivo. As intestinal pH increases, the pore size of hydrogel increases due to ionic interactions and thus releases the encapsulated bacteria and iron. The field emission scanning electron microscopy (FESEM) analysis confirmed the porous structure of hydrogel beads, and in vitro release studies showed a sustained release of iron and bacteria at intestinal pH. The hydrogel was found to be nontoxic and biocompatible in Caco2 cell lines. The formulation showed efficient in vitro and in vivo iron bioavailability in Fe depletion-repletion studies. B + I-Dex (H) was observed to generate less inflammatory response than FeSO4 or nonencapsulated iron dextran (I-Dex) in vivo. We entrust that this duly functional hydrogel formulation could be further utilized or modified for the development of oral therapeutics for IDA.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Simbióticos , Anemia Ferropénica/tratamiento farmacológico , Células CACO-2 , Humanos , Hidrogeles/uso terapéutico , Concentración de Iones de Hidrógeno , Hierro
8.
Front Nutr ; 7: 96, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32775340

RESUMEN

Enteropathogenic Escherichia coli (EPEC) leads to adverse colonic inflammation associated with poor resolution of inflammation and loss of epithelial integrity. Micronutrient trace element selenium (Se) is incorporated into selenoproteins as the 21st amino acid, selenocysteine (Sec). Previous studies have shown that such an incorporation of Sec into the selenoproteome is key for the anti-inflammatory functions of Se in macrophages and other immune cells. An intriguing mechanism underlying the anti-inflammatory and pro-resolving effects of Se stems from the ability of selenoproteins to skew arachidonic acid metabolism from pro-inflammatory mediators, prostaglandin E2 (PGE2) toward anti-inflammatory mediators derived from PGD2, such as 15-deoxy-Δ12, 14- prostaglandin J2 (15d-PGJ2), via eicosanoid class switching of bioactive lipids. The impact of Se and such an eicosanoid-class switching mechanism was tested in an enteric infection model of gut inflammation by C. rodentium, a murine equivalent of EPEC. C57BL/6 mice deficient in Se (Se-D) experienced higher mortality when compared to those on Se adequate (0.08 ppm Se) and Se supplemented (0.4 ppm Se) diets following infection. Decreased survival was associated with decreased group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) cells in colonic lamina propria of Se-D mice along with deceased expression of epithelial barrier protein Zo-1. Inhibition of metabolic inactivation of PGE2 by 15-prostaglandin dehydrogenase blocked the Se-dependent increase in ILC3 and Th17 cells in addition to reducing epithelial barrier integrity, as seen by increased systemic levels of FITC-dextran following oral administration; while 15d-PGJ2 administration in Se-D mice alleviated the effects by increasing ILC3 and Th17 cells. Mice lacking selenoproteins in monocyte/macrophages via the conditional deletion of the tRNA[Sec] showed increased mortality post infection. Our studies indicate a crucial role for dietary Se in the protection against inflammation following enteric infection via immune mechanisms involving epithelial barrier integrity.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 241: 118613, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32610216

RESUMEN

Two major health crisis of today's world are antimicrobial drug resistance and type II diabetes. To tackle them, there is an immediate requirement for the development of new and safer drugs and the present work is one such quest for novel and efficient drug candidates. We have developed three trace metal coordination compounds tethered with a reduced salen ligand {H2(hpdbal)2-an} (L), namely, a manganese-salan complex, [MnII(H2O)2{(hpdbal)2-an}] (1), a nickel-salan complex, [NiII{(hpdbal)2-an}] (2) and a copper-salan complex, [CuII{(hpdbal)2-an}] (3). The compounds were characterized by elemental analysis, vibrational spectroscopy, electronic spectroscopy, thermogravimetric analysis, nuclear magnetic resonance and electron-paramagnetic resonance techniques. The compounds were evaluated for antimicrobial activity against seven pathogens (Escherichia coli, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans) and antidiabetic activity by mimicking diabetic environment on the immortal human liver cancer cells, HepG2. Complexes 1 and 2 were additionally tested for their reactivity and stability in biological media mimic conditions. The nickel(II) salan complex (2) exhibited noteworthy antifungal activity against Candida albicans and the manganese(II) salan complex (1) induced increased glucose uptake by the insulin resistant cells. Both compounds were found to be stable when solution pH conditions were varied from 3 to 9. They exhibited strong affinity of binding towards a carrier protein, bovine serum albumin which was evaluated with the aid of multi-spectroscopic techniques.


Asunto(s)
Complejos de Coordinación , Diabetes Mellitus Tipo 2 , Complejos de Coordinación/farmacología , Cobre , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana , Níquel
10.
Gut Microbes ; 11(4): 1077-1091, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32223398

RESUMEN

Owing to their health benefits, dietary fermentable fibers, such as refined inulin, are increasingly fortified in processed foods to enhance their nutritional value. However, we previously demonstrated that when inulin was fed to Toll-like receptor 5 deficient (T5KO) mice susceptible to dysbiosis, a subset of them developed cholestasis and subsequently liver cancer in a gut microbiota-dependent manner. Therefore, we hypothesized that clearance of bacterial taxa, and thereby gut metabolites, involved in the onset and progression to liver cancer could abate the disease in these mice. Such a reshaping of microbiota by vancomycin treatment was sufficient to halt the development of liver cancer in inulin-fed T5KO mice; however, this intervention did not remedy disease penetrance for cholestatic liver injury and its sequelae, including hyperbilirubinemia, hypolipidemia, cholemia and liver fibrosis. Selective depletion of gut bacterial communities was observed in vancomycin-treated mice, including Gram-positive Lachnospiraceae and Ruminococcaceae belonging to the phylum Firmicutes, Bifidobacteria of the phylum Actinobacteria, which ferment fibers, and Clostridium cluster XIVa, which produce secondary bile acids. Lack of liver cancer in vancomycin-treated mice strongly correlated with the substantial loss of secondary bile acids in circulation. Although cholemia was unabated by vancomycin, the composition of serum bile acids shifted toward an abundance of hydrophilic primary bile acids, denoted by the increase in conjugated-to-unconjugated bile acid ratio. Taken together, the present study suggests that microbiotal regulation of bile acid metabolism is one of the critical mediators of fermentable fiber-induced liver cancer in dysbiotic mice.


Asunto(s)
Bacterias/metabolismo , Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal , Inulina/administración & dosificación , Neoplasias Hepáticas/prevención & control , Vancomicina/farmacología , Animales , Bacterias/efectos de los fármacos , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Fibras de la Dieta/metabolismo , Suplementos Dietéticos , Disbiosis , Ácidos Grasos Volátiles/metabolismo , Fermentación , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Noqueados , Receptor Toll-Like 5/genética
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 330-342, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30669096

RESUMEN

In our continued efforts to develop metal based therapeutic agents, we have synthesized a novel copper(II) complex, [{Cu(hpdbal-sbdt)}2] (2) tethered with a biocompatible ONS2- donor backbone [H2hpdbal-sbdt] (1) [H2hpdbal-sbdt is a tridentate ligand derived from S-benzyldithiocarbazate (Hsbdt) and 2-hydroxy-5-(phenyldiazenyl)benzaldehyde (Hhpdbal)]. The metal complex (2) was characterized using attenuated total reflection-infrared (ATR-IR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetry and differential scanning calorimetric (TG-DSC) analysis, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS) and elemental (CHNS) analysis. The antineoplastic ability of copper complex was evaluated in vitro against human cervical cancer (HeLa) cells. MTT assay results showed that the copper complex exhibited significant growth inhibition of HeLa cells with an IC50 value of 4.46 µM and this value was compared with reported standards. Cytotoxicity of the copper complex towards human embryonic kidney cells (HEK-293) was also evaluated. The potentially active copper complex was studied for its solution state stability at a pH range of 3-9. Following this, the interactive behaviour of the bioactive copper complex with a drug transporter protein (BSA) was deciphered through multi-spectrosopic investigations like steady-state fluorescence, three-dimensional fluorescence, deconvoluted-IR and UV-Visible techniques.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Evaluación Preclínica de Medicamentos , Albúmina Sérica Bovina/metabolismo , Animales , Rastreo Diferencial de Calorimetría , Bovinos , Muerte Celular/efectos de los fármacos , Cobre , Espectroscopía de Resonancia por Spin del Electrón , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Estructura Secundaria de Proteína , Albúmina Sérica Bovina/química , Soluciones , Espectrometría por Rayos X , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Termodinámica , Termogravimetría
12.
J Nutr Biochem ; 62: 28-34, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30218980

RESUMEN

Iron deficiency is routinely treated with oral or systemic iron supplements, which are highly reactive and could induce oxidative stress via augmenting the activity of proinflammatory enzyme myeloperoxidase (MPO). To investigate the extent to which MPO is involved in iron-induced toxicity, acute (24 h) iron toxicity was induced by intraperitoneal administration of FeSO4 (25 mg/kg body weight) to MPO-deficient (MpoKO) mice and their wild-type (WT) littermates. Acute iron toxicity was also assessed in WT mice pretreated with an MPO inhibitor, 4-aminobenzoic acid hydrazide. Systemic iron administration up-regulated circulating MPO and neutrophil elastase and elevated systemic inflammatory and organ damage markers in WT mice. However, genetic deletion of MPO or its inhibition significantly reduced iron-induced organ damage and systemic inflammatory responses. In contrast to the acute model, 8 weeks of 2% carbonyl iron diet feeding to WT mice did not change the levels of circulating MPO and neutrophil elastase but promoted their accumulation in the liver. Even though both MpoKO and WT mice displayed similar levels of diet-induced hyperferremia, MpoKO mice showed significantly reduced inflammatory response and oxidative stress than the WT mice. In addition, WT bone-marrow-derived neutrophils (BMDN) generated more reactive oxygen species than MPO-deficient BMDN upon iron stimulation. Altogether, genetic deficiency or pharmacologic inhibition of MPO substantially attenuated acute and chronic iron-induced toxicity. Our results suggest that targeting MPO during iron supplementation is a promising approach to reduce iron-induced toxicity/side effects in vulnerable population.


Asunto(s)
Hierro de la Dieta/efectos adversos , Errores Innatos del Metabolismo/metabolismo , Peroxidasa/genética , Compuestos de Anilina/farmacología , Animales , Sobrecarga de Hierro/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Peroxidasa/antagonistas & inhibidores , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Toxicidad Aguda
13.
Cell Host Microbe ; 23(1): 41-53.e4, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29276170

RESUMEN

Dietary supplementation with fermentable fiber suppresses adiposity and the associated parameters of metabolic syndrome. Microbiota-generated fiber-derived short-chain fatty acids (SCFAs) and free fatty acid receptors including GPR43 are thought to mediate these effects. We find that while fermentable (inulin), but not insoluble (cellulose), fiber markedly protected mice against high-fat diet (HFD)-induced metabolic syndrome, the effect was not significantly impaired by either inhibiting SCFA production or genetic ablation of GPR43. Rather, HFD decimates gut microbiota, resulting in loss of enterocyte proliferation, leading to microbiota encroachment, low-grade inflammation (LGI), and metabolic syndrome. Enriching HFD with inulin restored microbiota loads, interleukin-22 (IL-22) production, enterocyte proliferation, and antimicrobial gene expression in a microbiota-dependent manner, as assessed by antibiotic and germ-free approaches. Inulin-induced IL-22 expression, which required innate lymphoid cells, prevented microbiota encroachment and protected against LGI and metabolic syndrome. Thus, fermentable fiber protects against metabolic syndrome by nourishing microbiota to restore IL-22-mediated enterocyte function.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Fibras de la Dieta/uso terapéutico , Ácidos Grasos Volátiles/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/microbiología , Inulina/uso terapéutico , Receptores Acoplados a Proteínas G/genética , Adiposidad/efectos de los fármacos , Animales , Bifidobacterium/crecimiento & desarrollo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Células Epiteliales/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas de Homeodominio/genética , Interleucinas/genética , Mucosa Intestinal/citología , Mucosa Intestinal/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/prevención & control , Interleucina-22
14.
J Ethnopharmacol ; 213: 81-91, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29129602

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xylocarpus moluccensis (Lamk.) M. Roem of family Meliaceae has triterpenoids rich fruits. Triterpenoids have been known to possess cardioprotection and anti-atherosclerotic activities (Han and Bakovic, 2015; Wu et al., 2009). Standardized fraction of these fruits exhibited anti-dyslipidemic (Srivastava et al., 2015), anti-inflammatory (Ravangpai et al., 2011) and CNS depressant activity (Sarker et al., 2007). However, there is no report in the literature on its cardiovascular effects. AIM OF THE STUDY: The present study was undertaken to assess vasoprotective, anti-atherosclerotic and further examine the anti-dyslipidemic effect of the standardized fraction of Xylocarpus moluccensis (F018) fruits in the mechanical injury and high fat diet (HFD) induced dyslipidemic/ atherosclerosis models. MATERIALS AND METHODS: Guinea pigs were fed 0.08% cholesterol + 15% fat diet for 3 weeks, while ApoE KO mice were fed high fat diet for 18 weeks to induce dyslipidemia and atherosclerosis. A combination of balloon injury and high fat diet (1% cholesterol, 6% peanut oil) for 5 weeks was used to accelerate atherosclerosis in NZW rabbits. F018 was administered once daily by oral route in guinea pigs (10, 25 or 50mg/kg/day for 3 weeks), ApoE KO mice (50mg/kg/day for 6 weeks) and in NZW rabbit (25mg/kg/day for 5 weeks) to monitor its effect on dyslipidemia, vasoreactivity and plaque composition by using standard methodologies. RESULTS: F018 treatment in guinea pigs (25 and 50mg/kg/day), ApoE mice (50mg/kg/day) and rabbits (25mg/kg/day) significantly reduced plasma lipids and improved ACh induced vasorelaxation. Anti-dyslipidemic effect of F018 seems to be due to the modulation of enterohepatic genes involved in the cholesterol absorption and excretion. Moreover, significant improvement in the acetylcholine (ACh) induced vasorelaxation was accompanied with reduced inflammatory burden and enhanced activation of eNOS in ApoE mice aortic tissue. Similarly inflammatory cytokines, immunolabeling of macrophage marker (CD68) and MMP-9 were reduced along with augmentation in vascular smooth muscle cells and collagen type I and III in the mechanically injured iliac artery segment in the rabbits. CONCLUSIONS: Altogether, F018 preserved vasoreactivity, reduced atherosclerotic plaque progression and enhanced plaque stability by reducing lipids, inflammatory cytokines, improving endothelial function and collagen content.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Dislipidemias/tratamiento farmacológico , Hipolipemiantes/uso terapéutico , Meliaceae , Extractos Vegetales/uso terapéutico , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Apolipoproteínas E/genética , Dieta Alta en Grasa , Endotelio Vascular/efectos de los fármacos , Frutas , Cobayas , Hipolipemiantes/farmacología , Masculino , Ratones , Ratones Noqueados , Extractos Vegetales/farmacología , Placa Aterosclerótica/tratamiento farmacológico , Conejos , Vasodilatación/efectos de los fármacos
15.
Inflamm Bowel Dis ; 23(7): 1120-1132, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28445245

RESUMEN

BACKGROUND: Lipocalin-2 (Lcn2) is a multifunctional innate immune protein that exhibits antimicrobial activity by the sequestration of bacterial siderophores, regulates iron homeostasis, and augments cellular tolerance to oxidative stress. Studies in the murine model of colitis have demonstrated that Lcn2 deficiency exacerbates colitogenesis; however, the therapeutic potential of Lcn2 supplementation has yet to be elucidated. In light of its potential mucoprotective functions, we, herein, investigated whether expression of Lcn2 in the probiotic bacterium can be exploited to alleviate experimental colitis. METHODS: Murine Lcn2 was cloned into the pT1NX plasmid and transformed into Lactococcus lactis to generate L. lactis-expressing Lcn2 (Lactis-Lcn2) or the empty plasmid (Lactis-Con). Lactis-Lcn2 was characterized by immunoblot and enzyme-linked immunosorbent assay and tested for its antimicrobial efficacy on Escherichia coli. The capacity of Lactis-Lcn2 and Lactis-Con to withstand adverse conditions was tested using in vitro viability assays. Dextran sodium sulfate colitis model was used to investigate the colonization ability and therapeutic potential of Lactis-Lcn2 and Lactis-Con. RESULTS: Lcn2 derived from Lactis-Lcn2 inhibited the growth of E. coli and reduced the bioactivity of enterobactin (E. coli-derived siderophore) in vitro. Lactis-Lcn2 displayed enhanced tolerance to adverse pH, high concentration of bile acids, and oxidative stress in vitro and survived better in the inflamed gut than Lactis-Con. Consistent with these features, Lactis-Lcn2 displayed better mucoprotection against intestinal inflammation than Lactis-Con when administered into mice with dextran sulfate sodium-induced acute colitis. CONCLUSIONS: Our findings suggest that Lcn2 expression can be exploited to enhance the survivability of probiotic bacteria during inflammation, which could further improve its efficacy to treat experimental colitis.


Asunto(s)
Colitis/prevención & control , Modelos Animales de Enfermedad , Inflamación/prevención & control , Intestinos/efectos de los fármacos , Lactococcus lactis/fisiología , Lipocalina 2/metabolismo , Sustancias Protectoras/farmacología , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Expresión Génica Ectópica , Femenino , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Lipocalina 2/genética , Ratones , Ratones Endogámicos C57BL
16.
J Nutr Biochem ; 41: 25-33, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27951517

RESUMEN

Mammalian siderophores are believed to play a critical role in maintaining iron homeostasis. However, the properties and functions of mammalian siderophores have not been fully clarified. In this study, we have employed Chrome Azurol S (CAS) assay which is a well-established method for bacterial siderophores study, to detect and quantify mammalian siderophores in urine samples. Our study demonstrates that siderophores in urine can be altered by diet, gut microbiota and inflammation. C57BL/6 mice, fed on plant-based chow diets which contain numerous phytochemicals, have more siderophores in the urine compared to those fed on purified diets. Urinary siderophores were up-regulated in iron overload conditions, but not altered by other tested nutrients status. Further, germ-free mice displayed 50% reduced urinary siderophores, in comparison to conventional mice, indicating microbiota biotransformation is critical in generating or stimulating host metabolism to create more siderophores. Altered urinary siderophores levels during inflammation suggest that host health conditions influence systemic siderophores level. This is the first report to measure urinary siderophores as a whole, describing how siderophores levels are modulated under different physiological conditions. We believe that our study opens up a new field in mammalian siderophores research and the technique we used in a novel manner has the potential to be applied to clinical purpose.


Asunto(s)
Anemia Ferropénica/orina , Colitis/orina , Dieta/efectos adversos , Microbioma Gastrointestinal , Sobrecarga de Hierro/orina , Sideróforos/orina , Deficiencia de Vitamina A/orina , Anemia Ferropénica/etiología , Anemia Ferropénica/inmunología , Anemia Ferropénica/microbiología , Animales , Biomarcadores/sangre , Biomarcadores/orina , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Cruzamientos Genéticos , Dieta Alta en Grasa/efectos adversos , Femenino , Vida Libre de Gérmenes , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/inmunología , Sobrecarga de Hierro/microbiología , Lipocalina 2/genética , Lipocalina 2/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonelosis Animal/orina , Selenio/deficiencia , Selenio/inmunología , Selenio/envenenamiento , Deficiencia de Vitamina A/etiología , Deficiencia de Vitamina A/inmunología , Deficiencia de Vitamina A/microbiología
17.
Am J Pathol ; 186(4): 912-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26968114

RESUMEN

Green tea-derived polyphenol (-)-epigallocatechin-3-gallate (EGCG) has been extensively studied for its antioxidant and anti-inflammatory properties in models of inflammatory bowel disease, yet the underlying molecular mechanism is not completely understood. Herein, we demonstrate that EGCG can potently inhibit the proinflammatory enzyme myeloperoxidase in vitro in a dose-dependent manner over a range of physiologic temperatures and pH values. The ability of EGCG to mediate its inhibitory activity is counter-regulated by the presence of iron and lipocalin 2. Spectral analysis indicated that EGCG prevents the peroxidase-catalyzed reaction by reverting the reactive peroxidase heme (compound I:oxoiron) back to its native inactive ferric state, possibly via the exchange of electrons. Further, administration of EGCG to dextran sodium sulfate-induced colitic mice significantly reduced the colonic myeloperoxidase activity and alleviated proinflammatory mediators associated with gut inflammation. However, the efficacy of EGCG against gut inflammation is diminished when orally coadministered with iron. These findings indicate that the ability of EGCG to inhibit myeloperoxidase activity is one of the mechanisms by which it exerts mucoprotective effects and that counter-regulatory factors such as dietary iron and luminal lipocalin 2 should be taken into consideration for optimizing clinical management strategies for inflammatory bowel disease with the use of EGCG treatment.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Catequina/análogos & derivados , Inflamación/metabolismo , Hierro de la Dieta/metabolismo , Lipocalinas/metabolismo , Proteínas Oncogénicas/metabolismo , Peroxidasa/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Antioxidantes/metabolismo , Catequina/metabolismo , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipocalina 2 , Ratones Endogámicos C57BL ,
18.
Biometals ; 29(3): 451-65, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27007712

RESUMEN

Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.


Asunto(s)
Anemia Ferropénica/metabolismo , Biocatálisis/efectos de los fármacos , Inflamación/metabolismo , Hierro/metabolismo , Hierro/toxicidad , Lipocalina 2/metabolismo , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran , Hierro/administración & dosificación , Lipocalina 2/deficiencia , Lipocalina 2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Indian J Med Res ; 141(6): 823-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26205026

RESUMEN

BACKGROUND & OBJECTIVES: Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. METHODS: Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. RESULTS: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1ß genes known to be involved in lipid and glucose metabolism. INTERPRETATION & CONCLUSIONS: High fructose feeding to rats and hamsters led to the development of insulin resistance, hyperglycaemia, endothelial dysfunction and oxidative stress. C. oil prevented development of thrombotic complications associated with insulin resistance perhaps by modulating genes involved in lipid and glucose metabolism. Further studies are required to confirm these findings.


Asunto(s)
Resistencia a la Insulina , Hígado/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Trombosis/tratamiento farmacológico , Animales , Glucemia , Cricetinae , Curcuma , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Insulina/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Mesocricetus , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Agregación Plaquetaria/efectos de los fármacos , Ratas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Trombosis/metabolismo , Trombosis/patología , Factores de Transcripción/biosíntesis
20.
Br J Nutr ; 113(1): 100-13, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25391643

RESUMEN

In the present study, the anti-atherosclerotic effect and the underlying mechanism of curcuma oil (C. oil), a lipophilic fraction from turmeric (Curcuma longa L.), was evaluated in a hamster model of accelerated atherosclerosis and in THP-1 macrophages. Male golden Syrian hamsters were subjected to partial carotid ligation (PCL) or FeCl3-induced arterial oxidative injury (Ox-injury) after 1 week of treatment with a high-cholesterol (HC) diet or HC diet plus C. oil (100 and 300 mg/kg, orally). Hamsters fed with the HC diet were analysed at 1, 3 and 5 weeks following carotid injury. The HC diet plus C. oil-fed group was analysed at 5 weeks. In hyperlipidaemic hamsters with PCL or Ox-injury, C. oil (300 mg/kg) reduced elevated plasma and aortic lipid levels, arterial macrophage accumulation, and stenosis when compared with those subjected to arterial injury alone. Similarly, elevated mRNA transcripts of matrix metalloproteinase-2 (MMP-2), MMP-9, cluster of differentiation 45 (CD45), TNF-α, interferon-γ (IFN-γ), IL-1ß and IL-6 were reduced in atherosclerotic arteries, while those of transforming growth factor-ß (TGF-ß) and IL-10 were increased after the C. oil treatment (300 mg/kg). The treatment with C. oil prevented HC diet- and oxidised LDL (OxLDL)-induced lipid accumulation, decreased the mRNA expression of CD68 and CD36, and increased the mRNA expression of PPARα, LXRα, ABCA1 and ABCG1 in both hyperlipidaemic hamster-derived peritoneal and THP-1 macrophages. The administration of C. oil suppressed the mRNA expression of TNF-α, IL-1ß, IL-6 and IFN-γ and increased the expression of TGF-ß in peritoneal macrophages. In THP-1 macrophages, C. oil supplementation prevented OxLDL-induced production of TNF-α and IL-1ß and increased the levels of TGF-ß. The present study shows that C. oil attenuates arterial injury-induced accelerated atherosclerosis, inflammation and macrophage foam-cell formation.


Asunto(s)
Aterosclerosis/prevención & control , Curcuma/química , Células Espumosas/efectos de los fármacos , Extractos Vegetales/farmacología , Placa Aterosclerótica/tratamiento farmacológico , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Colesterol en la Dieta/administración & dosificación , Cricetinae , Dieta Alta en Grasa , Células Espumosas/metabolismo , Homeostasis , Inflamación/prevención & control , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Aceites de Plantas/farmacología , Placa Aterosclerótica/prevención & control , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA