Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Chem ; 63(23): 14740-14760, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33226226

RESUMEN

The discovery of a pan-genotypic hepatitis C virus (HCV) NS3/4A protease inhibitor based on a P1-P3 macrocyclic tripeptide motif is described. The all-carbon tether linking the P1-P3 subsites of 21 is functionalized with alkyl substituents, which are shown to effectively modulate both potency and absorption, distribution, metabolism, and excretion (ADME) properties. The CF3Boc-group that caps the P3 amino moiety was discovered to be an essential contributor to metabolic stability, while positioning a methyl group at the C1 position of the P1' cyclopropyl ring enhanced plasma trough values following oral administration to rats. The C7-fluoro, C6-CD3O substitution pattern of the P2* isoquinoline heterocycle of 21 was essential to securing the targeted potency, pharmacokinetic (PK), and toxicological profiles. The C6-CD3O redirected metabolism away from a problematic pathway, thereby circumventing the time-dependent cytochrome P (CYP) 450 inhibition observed with the C6-CH3O prototype.


Asunto(s)
Antivirales/farmacología , Péptidos Cíclicos/farmacología , Inhibidores de Serina Proteinasa/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Antivirales/farmacocinética , Células CHO , Cricetulus , Descubrimiento de Drogas , Estabilidad de Medicamentos , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacocinética , Ratas , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/metabolismo , Inhibidores de Serina Proteinasa/farmacocinética , Relación Estructura-Actividad
2.
Biol Trace Elem Res ; 152(1): 57-65, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23296902

RESUMEN

Over 50 years ago, chromium (Cr) was proposed to be an essential trace element; however, recent studies indicate that this status should be removed as the effects of Cr supplementation appear to be pharmacological rather than nutritional. The pharmacological basis for Cr's effects can explain the inability of investigators to discover a biomarker for Cr status. One potential biomarker has not been examined to date. Cr is known to be mobilized in the body in response to insulin (or insulin release in response to a glucose challenge), resulting in an increase in urinary Cr excretion. The magnitude of increase in urinary Cr loss as a function of dietary Cr intake was tested as a potential biomarker for Cr. Zucker lean rats housed in carefully controlled metal-free conditions were provided a series of purified diets containing variable Cr contents (from 16 µg/kg diet to 2,000 µg/kg) for 23 weeks. The 16 µg/kg diet contained less Cr than any diet examined to date. Urine samples were collected before and after insulin and glucose challenges (0, 2, 6, and 12 h postinjection). Urinary Cr levels were analyzed by the standard method of addition using graphite furnace atomic absorption. The rate of urinary Cr loss after a glucose or insulin challenge was found to not be dependent on the Cr content of the rats' diets. Blood iron levels of the rats were also measured to determine if the addition of Cr to the diet altered iron status. The Cr content of the diet was found to have no affect on blood iron levels. Overall, the study demonstrated that insulin-stimulated urinary Cr excretion cannot be used as a biomarker for Cr status.


Asunto(s)
Biomarcadores/orina , Cromo/administración & dosificación , Cromo/orina , Insulina/administración & dosificación , Animales , Suplementos Dietéticos , Glucosa/administración & dosificación , Grafito , Hierro/sangre , Masculino , Ratas , Ratas Zucker , Espectrofotometría Atómica/métodos
3.
J Med Chem ; 55(18): 7978-87, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22928876

RESUMEN

Protein arginine methyltransferases (PRMTs) are proved to play vital roles in chromatin remodeling, RNA metabolism, and signal transduction. Aberrant regulation of PRMT activity is associated with various pathological states such as cancer and cardiovascular disorders. Development and application of small molecule PRMT inhibitors will provide new avenues for therapeutic discovery. The combination of pharmacophore-based virtual screening methods with radioactive methylation assays provided six hits identified as inhibitors against the predominant arginine methyltransferase PRMT1 within micromolar potency. Two potent compounds, A9 and A36, exhibited the inhibitory effect by directly targeting substrate H4 other than PRMT1 and displayed even higher inhibition activity than the well-known PRMT inhibitors AMI-1. A9 significantly inhibits proliferation of castrate-resistant prostate cancer cells. Together, A9 may be a potential inhibitor against advanced hormone-independent cancers, and the work will provide clues for the future development of specific compounds that block the interaction of PRMTs with their targets.


Asunto(s)
Arginina/metabolismo , Inhibidores Enzimáticos/farmacología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Histona Acetiltransferasas/antagonistas & inhibidores , Humanos , Metilación/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores
4.
J Biol Inorg Chem ; 16(3): 381-90, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21086001

RESUMEN

Chromium was proposed to be an essential trace element over 50 years ago and has been accepted as an essential element for over 30 years. However, the studies on which chromium's status are based are methodologically flawed. Whether chromium is an essential element has been examined for the first time in carefully controlled metal-free conditions using a series of purified diets containing various chromium contents. Male Zucker lean rats were housed in specially designed metal-free cages for 6 months and fed the AIN-93G diet with no added chromium in the mineral mix component of the diet, the standard AIN-93G diet, the standard AIN-93G diet supplemented with 200 µg Cr/kg, or the standard AIN-93G diet supplemented with 1,000 µg Cr/kg. The chromium content of the diet had no effect on body mass or food intake. Similarly, the chromium content of the diet had no effect on glucose levels in glucose tolerance or insulin tolerance tests. However, a distinct trend toward lower insulin levels under the curve after a glucose challenge was observed with increasing chromium content in the diet; rats on the supplemented AIN-93G diets had significantly lower areas (P < 0.05) than rats on the low-chromium diet. The studies reveal that a diet with as little chromium as reasonably possible had no effect on body composition, glucose metabolism, or insulin sensitivity compared with a chromium-"sufficient" diet. Together with the results of other recent studies, these results clearly indicate that chromium can no longer be considered an essential element.


Asunto(s)
Cromo/metabolismo , Oligoelementos/metabolismo , Animales , Glucemia/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Masculino , Ratas , Ratas Zucker
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA