Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473970

RESUMEN

Chamaecyparis obtusa (Siebold & Zucc.) Endl., which belongs to the Cupressaceae family, occurs naturally in North America and Asia, especially in Korea, Taiwan and Japan, where it is an evergreen, coniferous, sacred, ethnic tree. It has many useful varieties that are widespread throughout the world and grown for decorative purposes. It is most commonly used as an ornamental plant in homes, gardens or parks. It is also widely used in many areas of the economy; for example, its wood is used in architecture as well as furniture production. In addition, oil extracted from Chamaecyparis obtusa is increasingly used in cosmetology for skin care. Due to its wide economic demand, mainly in Japan, it represents the largest area of plantation forest. Despite this, it is on the red list of endangered species. Its use in ethnopharmacology has led to more and more research in recent years in an attempt to elucidate the potential mechanisms of its various biological activities, such as antimicrobial, antioxidant, anticancer, antidiabetic, antiasthmatic, anti-inflammatory, antiallergic, analgesic and central nervous system effects. It has also been shown that Chamaecyparis obtusa can be used as an insect repellent and an ingredient in plant disease treatment. This thesis provides a comprehensive review of the biological studies to date, looking at different areas of the economic fields of potential use of Chamaecyparis obtusa.


Asunto(s)
Chamaecyparis , Chamaecyparis/fisiología , Árboles/fisiología , Japón , Antiinflamatorios , Asia
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256118

RESUMEN

Plectranthus scutellarioides (L.) R.Br. is a medicinal plant that has long been used in traditional medicine to treat conditions such as abscesses, ulcers, and ear and eye infections. It is known to have a wide range of biological properties, such as antibacterial, antioxidant, antifungal, anti-inflammatory, anti-diabetic and anti-cancer effects. In this study, we established in vitro cultures from both the aerial parts and roots of Plectranthus scutellarioides. Subsequently, we compared the basic phytochemical profile of the obtained extracts and conducted a biological analysis to assess their potential for inducing apoptosis in breast (MCF-7) and lung (A549) cancer cells. Phytochemical analysis by HPLC-MS revealed the presence of compounds belonging to phenolic acids (ferulic, syringic, vanillic, rosmarinic, chlorogenic, caffeic, coumaric, dihydroxybenzoic acids), flavonoids (eriodyctiol and cirsimaritin), and terpenes such as 6,11,12,14,16-Pentahydroxy-3,17diacetyl-8,11,13-abietatrien-7-one, 6,11,12,14,16-Pentahydroxy-3,17-diacetyl5,8,11,13-abietatetraen-7-one, and 3,6,12-Trihydroxy-2-acetyl-8,12-abietadien7,11,14-trione. The results show that both extracts have a cytotoxic and genotoxic effect against MCF-7 and A549 cancer cells, with a different degree of sensitivity. It was also shown that both extracts can induce apoptosis by altering the expression of apoptotic genes (Bax, Bcl-2, TP53, Fas, and TNFSF10), reducing mitochondrial membrane potential, increasing ROS levels, and increasing DNA damage. In addition, it has been shown that the tested extracts can alter blood coagulation parameters. Our results indicate that extracts from in vitro cultures of Plectranthus scutellarioides aerial parts and roots have promising therapeutic application, but further research is needed to better understand the mechanisms of their action in the in vitro model.


Asunto(s)
Ácidos Cumáricos , Plectranthus , Humanos , Células A549 , Antibacterianos , Fitoquímicos
3.
Chem Biodivers ; 21(2): e202300494, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983920

RESUMEN

This study provides a comprehensive overview of the current knowledge regarding phototoxic terrestrial plants and their phototoxic and photosensitizing metabolites. Within the 435,000 land plant species, only around 250 vascular plants have been documented as phototoxic or implicated in phototoxic occurrences in humans and animals. This work compiles a comprehensive catalog of these phototoxic plant species, organized alphabetically based on their taxonomic family. The dataset encompasses meticulous details including taxonomy, geographical distribution, vernacular names, and information on the nature and structure of their phototoxic and photosensitizing molecule(s). Subsequently, this study undertook an in-depth investigation into phototoxic molecules, resulting in the compilation of a comprehensive and up-to-date list of phytochemicals exhibiting phototoxic or photosensitizing activity synthesized by terrestrial plants. For each identified molecule, an extensive review was conducted, encompassing discussions on its phototoxic activity, chemical family, occurrence in plant families or species, distribution within different plant tissues and organs, as well as the biogeographical locations of the producer species worldwide. The analysis also includes a thorough discussion on the potential use of these molecules for the development of new photosensitizers that could be used in topical or injectable formulations for antimicrobial and anticancer phototherapy as well as manufacturing of photoactive devices.


Asunto(s)
Dermatitis Fototóxica , Fármacos Fotosensibilizantes , Humanos , Animales , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Plantas
4.
Molecules ; 28(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37764326

RESUMEN

Leonurus sibiricus L. has great ethnobotanical and ethnomedicinal significance. This study aimed to assess the antioxidant and anti-inflammatory properties of Leonurus sibiricus L. transgenic roots extracts transformed by Rhizobium rhizogenes, with and without the AtPAP1 transcriptional factor. The study determined the total phenolic and flavonoid contents, as well as in vitro antioxidant assays, including hydrogen peroxide and nitric oxide scavenging activity. In addition, in silico computational studies and molecular docking were conducted to evaluate the antioxidant and anti-inflammatory potential of the identified compounds. The ligands were docked to NADPH oxidase, cyclooxygenase 2,5-lipoxygenase, inducible nitric synthase and xanthine oxidase: enzymes involved in the inflammatory process. The total phenolic and flavonoid contents ranged from 85.3 ± 0.35 to 57.4 ± 0.15 mg/g GAE/g and 25.6 ± 0.42 to 18.2 ± 0.44 mg/g QUE/g in hairy root extracts with and without AtPAP1, respectively. H2O2 scavenging activity (IC50) was found to be 29.3 µg/mL (with AtPAP1) and 37.5 µg/mL (without AtPAP1 transcriptional factor), and NO scavenging activity (IC50) was 48.0 µg/mL (with AtPAP1) and 68.8 µg/mL (without AtPAP1 transcriptional factor). Leonurus sibiricus L. transformed root extracts, both with and without AtPAP1, are a source of phytochemicals belonging to different classes of molecules, such as flavonoids (catechin and rutin), phenolic compounds (caffeic acid, coumaric acid, chlorogenic acid, ferulic acid) and phenylpropanoid (verbascoside). Among the radicals formed after H removal from the different -OH positions, the lowest bond dissociation enthalpy was observed for rutin (4'-OH). Rutin was found to bind with cyclooxygenase 2, inducible nitric synthases and xanthine oxidase, whereas chlorogenic acid demonstrated optimal binding with 5-lipoxygenase. Therefore, it appears that the Leonurus sibiricus L. transformed root extract, both with and without the AtPAP1 transcriptional factor, may serve as a potential source of active components with antioxidant and anti-inflammatory potential; however, the extract containing AtPAP1 demonstrates superior activities. These properties could be beneficial for human health.


Asunto(s)
Antioxidantes , Leonurus , Humanos , Antioxidantes/farmacología , Araquidonato 5-Lipooxigenasa , Ciclooxigenasa 2 , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Xantina Oxidasa , Flavonoides/farmacología , Rutina , Antiinflamatorios/farmacología , Ácido Clorogénico , Extractos Vegetales/farmacología
5.
Molecules ; 28(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446611

RESUMEN

Nanoparticles (NPs), due to their size, have a key position in nanotechnology as a spectrum of solutions in medicine. NPs improve the ability of active substances to penetrate various routes: transdermal, but also digestive (active endocytosis), respiratory and injection. Chitosan, an N-deacetylated derivative of chitin, is a natural biodegradable cationic polymer with antioxidant, anti-inflammatory and antimicrobial properties. Cross-linked chitosan is an excellent matrix for the production of nanoparticles containing active substances, e.g., the Ginkgo biloba extract (GBE). Chitosan nanoparticles with the Ginkgo biloba extract (GBE) were obtained by ion gelation using TPP as a cross-linking agent. The obtained product was characterized in terms of morphology and size based on SEM and Zeta Sizer analyses as well as an effective encapsulation of GBE in nanoparticles-FTIR-ATR and UV-Vis analyses. The kinetics of release of the active substance in water and physiological saline were checked. Biological studies were carried out on normal and cancer cell lines to check the cytotoxic effect of GBE, chitosan nanoparticles and a combination of the chitosan nanoparticles with GBE. The obtained nanoparticles contained and released GBE encapsulated in research media. Pure NPs, GBE and a combination of NPs and the extract showed cytotoxicity against tumor cells, with no cytotoxicity against the physiological cell line.


Asunto(s)
Quitosano , Nanopartículas , Extractos Vegetales/farmacología , Ginkgo biloba
6.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36982980

RESUMEN

Asthma is an inflammatory disease whose etiology remains unclear. Its characteristics encompass a wide range of clinical symptoms, inflammatory processes, and reactions to standard therapies. Plants produce a range of constitutive products and secondary metabolites that may have therapeutic abilities. The aim of this study was to determine the effects of Senna obtusifolia transgenic hairy root extracts on virus-induced airway remodeling conditions. Three cell lines were incubated with extracts from transformed (SOA4) and transgenic (SOPSS2, with overexpression of the gene encoding squalene synthase 1) hairy roots of Senna obtusifolia in cell lines undergoing human rhinovirus-16 (HRV-16) infection. The effects of the extracts on the inflammatory process were determined based on the expression of inflammatory cytokines (IL-8, TNF-α, IL-1α and IFN-γ) and total thiol content. The transgenic Senna obtusifolia root extract reduced virus-induced expression of TNF, IL-8 and IL-1 in WI-38 and NHBE cells. The SOPSS2 extract reduced IL-1 expression only in lung epithelial cells. Both tested extracts significantly increased the concentration of thiol groups in epithelial lung cells. In addition, the SOPPS2 hairy root extract yielded a positive result in the scratch test. SOA4 and SOPPS2 Senna obtusifolia hairy root extracts demonstrated anti-inflammatory effects or wound healing activity. The SOPSS2 extract had stronger biological properties, which may result from a higher content of bioactive secondary metabolites.


Asunto(s)
Interleucina-8 , Senna , Humanos , Interleucina-8/metabolismo , Senna/genética , Cicatrización de Heridas , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Interleucina-1/metabolismo , Raíces de Plantas/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-36981614

RESUMEN

Inflammation is closely related to asthma and its defining feature: airway remodeling. The aim of this study was to determine the effects of extracts of normal (NR) and transformed (TR) Leonotis nepetifolia roots on respiratory cells and against the gingival epithelium. Extracts from NR and TR roots were added to lung fibroblast, bronchial epithelial and gingival fibroblast cell lines, in the presence of HRV-16 infection, to determine their impact on inflammation. The expression of inflammatory cytokines (IL-6, IL-1ß, GM-CSF and MCAF) as well as total thiol contents were assessed. The TR extract inhibited rhinovirus-induced IL-6 and IL-1ß expression in all tested airway cells (p < 0.05). Additionally, the extract decreased GM-CSF expression in bronchial epithelial cells. The tested extracts had positive effects on total thiol content in all tested cell lines. The TR root extract demonstrated wound healing potential. While both tested extracts exhibited anti-inflammatory and antioxidative effects, they were stronger for the TR extract, possibly due to higher concentrations of beneficial metabolites such as phenols and flavonoids. Additionally, wound healing activity was demonstrated for the TR root extract. These results suggest that TR root extract may become a promising therapeutic agent in the future.


Asunto(s)
Citocinas , Lamiaceae , Humanos , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-6 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Lamiaceae/metabolismo , Inflamación/tratamiento farmacológico
8.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499134

RESUMEN

The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.


Asunto(s)
Hiperpigmentación , Hipopigmentación , Humanos , Rayos Ultravioleta , Melaninas , Pigmentación de la Piel , Hiperpigmentación/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Monofenol Monooxigenasa , Melanocitos
9.
Cells ; 11(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291112

RESUMEN

Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II-Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.


Asunto(s)
Diterpenos , Plectranthus , Humanos , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Colforsina , Diterpenos/química , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/metabolismo , Simulación del Acoplamiento Molecular , Plectranthus/química , Plectranthus/metabolismo , Protoporfirinógeno-Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pigmentos Retinianos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889231

RESUMEN

Plants are a rich source of secondary metabolites that exhibit numerous desired properties. The compounds may influence the biology of melanocytes, pigment cells that produce melanin, by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its downstream target is microphthalmia-associated transcription factor, responsible for the expression of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and isolated plant compounds in B16 cells. Database searches were conducted using online-based library search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpigmentation by changing the level of melanin production, which may pose a significant cosmetic issue. Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation disorders.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Línea Celular Tumoral , Melanocitos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Monofenol Monooxigenasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología
11.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35326606

RESUMEN

Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.

12.
Curr Pharm Biotechnol ; 23(11): 1383-1395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35249478

RESUMEN

BACKGROUND: Leonotis nepetifolia (L.) R. Br. (Lamiaceae) is a shrub traditionally used to alleviate inflammatory conditions. OBJECTIVES: The present study aimed at investigating the biological activity of methanolic nontransformed and transformed Rhizobium rhizogenes root extracts from L. nepetifolia against human melanoma cells. METHODS: Cytotoxicity and genotoxicity properties, the impact on topoisomerase I activity, and proapoptotic activity were evaluated by the MTT test, comet assay, topoisomerase I assay, and fluorescence-activated cell sorting analysis. Moreover, the expressions of p53 were examined by qPCR and Western blot analysis. Docking studies were conducted to assess the potential interactions of the identified phytochemicals with the p53 binding protein Mdm-2, and computational analyses exhibited their antioxidant potential. RESULTS: Both extracts showed cytotoxic potential against human melanoma cells, but generally the activity was more potent for transformed roots than untransformed (IC50 760 µg/mL and 980 µg/mL, respectively). A similar effect was revealed during the evaluation of genotoxic and proapoptotic properties. Moreover, the expression of p53 was also found to be increased after extract treatment. The most dominant identified compounds in both extracts were as follows: (+)- catechin, p-coumaric acid, m-coumaric acid, and (+)-rosmarinic acid. Docking studies and computational analysis showed that (+)-rosmarinic acid possesses the highest binding affinity to the p53 binding protein, Mdm-2, and exhibits the best antioxidant property from the most commonly identified phytochemicals. CONCLUSION: Our findings revealed the potential of L. nepetifolia transformed root extract as a source of bioactive compounds with cytotoxic, genotoxic, and proapoptotic activity against human melanoma cells as well as antioxidant properties.


Asunto(s)
Lamiaceae , Melanoma , Antioxidantes/química , ADN-Topoisomerasas de Tipo I , Humanos , Lamiaceae/química , Melanoma/tratamiento farmacológico , Fitoquímicos/análisis , Extractos Vegetales/química , Proteína p53 Supresora de Tumor/genética
13.
Cancers (Basel) ; 14(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35159021

RESUMEN

Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.

14.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830374

RESUMEN

The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.


Asunto(s)
Queratinocitos/efectos de los fármacos , Fitoquímicos/uso terapéutico , Plantas/química , Cicatrización de Heridas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Metabolismo Secundario/efectos de los fármacos
15.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684788

RESUMEN

It is known that Senna obtusifolia has been used in medicine since ancient times due to the content of many valuable compounds with a pro-health effect. One of them is betulinic acid, which is a pentacyclic triterpene with antimalarial, antiviral, anti-inflammatory and anticancer properties. In this work, a continuation of our previous research, an attempt was made to increase the level of betulinic acid accumulation by the cultivation of transgenic hairy roots that overexpress the squalene synthase gene in a 10 L sprinkle bioreactor with methyl jasmonate elicitation. We present that the applied strategy allowed us to increase the content of betulinic acid in hairy root cultures to the level of 48 mg/g dry weight. The obtained plant extracts showed a stronger cytotoxic effect on the U87MG glioblastoma cell line than the roots grown without elicitors. Additionally, the induction of apoptosis, reduction of mitochondrial membrane potential, chromosomal DNA fragmentation and activation of caspase cascades are demonstrated. Moreover, the tested extract showed inhibition of topoisomerase I activity.


Asunto(s)
Acetatos/farmacología , Antineoplásicos Fitogénicos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Triterpenos Pentacíclicos/metabolismo , Senna/efectos de los fármacos , Senna/metabolismo , Células A549 , Antineoplásicos Fitogénicos/biosíntesis , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Reactores Biológicos , Biotecnología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Fragmentación del ADN/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Senna/crecimiento & desarrollo , Ácido Betulínico
16.
Chem Biodivers ; 18(8): e2100455, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34185351

RESUMEN

Betulinic acid, which is found in transgenic roots of Senna obtusifolia (L.) H.S.Irwin & Barneby, is a pentacyclic triterpene with distinctive pharmacological activities. In this study, we report the differences in the content of betulinic acid and selected anthraquinones in transgenic S. obtusifolia hairy roots with overexpression of the PgSS1 gene (SOPSS2 line) and in transformed hairy roots without this genetic construct (SOA41 line). Both hairy root lines grew in 10 L sprinkle bioreactor. Additionally, the extracts obtained from this plant material were used for biological tests. Our results demonstrated that the SOPSS2 hairy root cultures from the bioreactor showed an increase in the content of betulinic acid (38.125 mg/g DW), compared to the SOA41 hairy root line (4.213 mg/g DW). Biological studies have shown a cytotoxic and antiproliferative effect on U-87MG glioblastoma cells, and altering the level of apoptotic proteins (Bax, p53, Puma and Noxa). Antimicrobial properties were demonstrated for both tested extracts, with a stronger effect of SOPSS2 extract. Moreover, both extracts showed moderate antiviral properties on norovirus surrogates.


Asunto(s)
Modelos Biológicos , Triterpenos Pentacíclicos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Senna/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Antraquinonas/farmacología , Apoptosis/efectos de los fármacos , Reactores Biológicos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/química , Senna/química , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Ácido Betulínico
17.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339446

RESUMEN

The plant kingdom is a source of important therapeutic agents. Therefore, in this review, we focus on natural compounds that exhibit efficient anti-inflammatory activity via modulation signaling transduction pathways in macrophage cells. Both extracts and pure chemicals from different species and parts of plants such as leaves, roots, flowers, barks, rhizomes, and seeds rich in secondary metabolites from various groups such as terpenes or polyphenols were included. Selected extracts and phytochemicals control macrophages biology via modulation signaling molecules including NF-κB, MAPKs, AP-1, STAT1, STAT6, IRF-4, IRF-5, PPARγ, KLF4 and especially PI3K/AKT. Macrophages are important immune effector cells that take part in antigen presentation, phagocytosis, and immunomodulation. The M1 and M2 phenotypes are related to the production of pro- and anti-inflammatory agents, respectively. The successful resolution of inflammation mediated by M2, or failed resolution mediated by M1, may lead to tissue repair or chronic inflammation. Chronic inflammation is strictly related to several disorders. Thus, compounds of plant origin targeting inflammatory response may constitute promising therapeutic strategies.


Asunto(s)
Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Transducción de Señal , Macrófagos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Plantas Medicinales , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707732

RESUMEN

The skin is an important organ that acts as a physical barrier to the outer environment. It is rich in immune cells such as keratinocytes, Langerhans cells, mast cells, and T cells, which provide the first line of defense mechanisms against numerous pathogens by activating both the innate and adaptive response. Cutaneous immunological processes may be stimulated or suppressed by numerous plant extracts via their immunomodulatory properties. Several plants are rich in bioactive molecules; many of these exert antimicrobial, antiviral, and antifungal effects. The present study describes the impact of plant extracts on the modulation of skin immunity, and their antimicrobial effects against selected skin invaders. Plant products remain valuable counterparts to modern pharmaceuticals and may be used to alleviate numerous skin disorders, including infected wounds, herpes, and tineas.


Asunto(s)
Antiinfecciosos/administración & dosificación , Extractos Vegetales/administración & dosificación , Enfermedades Cutáneas Infecciosas/tratamiento farmacológico , Enfermedades Cutáneas Infecciosas/microbiología , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/inmunología , Dermatomicosis/microbiología , Sinergismo Farmacológico , Humanos , Factores Inmunológicos/administración & dosificación , Plantas Medicinales/química , Piel/efectos de los fármacos , Piel/inmunología , Piel/microbiología , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/inmunología , Enfermedades Cutáneas Bacterianas/microbiología , Enfermedades Cutáneas Infecciosas/inmunología , Virosis/tratamiento farmacológico , Virosis/inmunología , Virosis/virología
19.
Biomolecules ; 10(4)2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230928

RESUMEN

Many biologically-active plant-derived compounds have therapeutic or chemopreventive effects. The use of plant in vitro cultures in conjunction with modern genetic engineering techniques allows greater amounts of valuable secondary metabolites to be obtained without interfering with the natural environment. This work presents the first findings concerning the acquisition of transgenic hairy roots of Senna obtusifolia overexpressing the gene encoding squalene synthase 1 from Panax ginseng (PgSS1) (SOPSS hairy loot lines) involved in terpenoid biosynthesis. Our results confirm that one of PgSS1-overexpressing hairy root line extracts (SOPSS2) possess a high cytotoxic effect against a human acute lymphoblastic leukemia (NALM6) cell line. Further analysis of the cell cycle, the expression of apoptosis-related genes (TP53, PUMA, NOXA, BAX) and the observed decrease in mitochondrial membrane potential also confirmed that the SOPSS2 hairy root extract displays the highest effects; similar results were also obtained for this extract combined with doxorubicin. The high cytotoxic activity, observed both alone or in combination with doxorubicin, may be due to the higher content of betulinic acid as determined by HPLC analysis. Our results suggest synergistic effects of tested extract (betulinic acid in greater amount) with doxorubicin which may be used in the future to develop new effective strategies of cancer chemosensitization.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Farnesil Difosfato Farnesil Transferasa/genética , Panax/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Extracto de Senna/farmacología , Apoptosis/efectos de los fármacos , Doxorrubicina/farmacología , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Humanos , Leucemia , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Triterpenos Pentacíclicos/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Extracto de Senna/química , Senna/genética , Ácido Betulínico
20.
Curr Pharm Des ; 26(24): 2859-2875, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32303169

RESUMEN

Skin ailments present a major health burden in both developed and undeveloped countries. Maintaining healthy skin is important for a healthy body. Medicinal plants have long provided reliable therapy in the treatment of skin diseases in humans through a diverse range of bioactive molecules. Skin diseases may have a various basis, or may be genetically determined; together, they constitute approximately 34% of all occupational diseases encountered in people of all ages. Of these, melanoma is one of the most dangerous forms, with very poor prognosis for patients if it is diagnosed too late. This review of the literature over the past five years examines the role and utilities of plant extracts in treating various skin diseases such as atopic dermatitis, acne or melanoma with various potential mechanisms of action.


Asunto(s)
Dermatitis Atópica , Plantas Medicinales , Enfermedades de la Piel , Humanos , Extractos Vegetales/farmacología , Piel , Enfermedades de la Piel/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA