Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 33(10): 1841-1856, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038265

RESUMEN

BACKGROUND: Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS: To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb ß 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS: Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb ß 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb ß 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the ß 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb ß 3 activity in vitro. CONCLUSIONS: Carbamylation of α IIb ß 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb ß 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.


Asunto(s)
Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Uremia , Humanos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Carbamilación de Proteína , Espectrometría de Masas en Tándem , Plaquetas , Uremia/complicaciones , Uremia/metabolismo , Fibrinógeno/química , Fibrinógeno/metabolismo , Aminoácidos
2.
J Trauma Acute Care Surg ; 84(6S Suppl 1): S120-S124, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29462086

RESUMEN

BACKGROUND: Intraosseous (IO) vascular access is increasingly used as an emergency tool for achieving access to the systemic circulation in critically ill patients. The role of IO transfusion of blood in damage control resuscitation is however questionable due to possible inadequate flow rate and hemolysis. Some experts claim that IO transfusion is contraindicated. In this study, we have challenged this statement by looking at flow rates of autologous fresh whole blood reinfusion and hemolysis using two of the commonly used Food and Drug Administration-approved and Conformité Européenne (CE)-marked sternal needles. Additionally, the success rate of sternal access between the two devices is evaluated. METHODS: Volunteer professional military personnel, were enrolled prospectively in a nonrandomized observational study design. We collected 450 mL of autologous whole blood from each participant. Participants were divided into the following three groups of 10: Tactically Advanced Lifesaving IO Needle (T.A.L.O.N.) IO, FAST1 IO, and intravenous group. The reinfusion was done by gravity only. Blood sampling was performed before blood collection and 30 minutes after reinfusion. Investigation of hemolysis was performed by measurements of haptoglobin and lactate dehydrogenase. Success rate was evaluated by correct aspiration of bone marrow. RESULTS: Median reinfusion rate was 46.2 mL/min in the FAST1 group, 32.4 mL/min in the T.A.L.O.N. group, and 74.1 mL/min in the intravenous group. Blood samples from all participants were within normal ranges. There was no statistically significant difference in haptoglobin and lactate dehydrogenase between the groups. In the FAST1 group, 1 (9%) of 11 procedures failed. In the T.A.L.O.N. group, 4 (29%) of 14 procedures failed. CONCLUSION: Although preferable, achieving peripheral venous access in the bleeding patient is a major problem. Our findings suggest that fresh whole-blood transfusion through the IO route is safe, reliable, and provide sufficient flow for resuscitation. LEVEL OF EVIDENCE: Therapeutic/Care management study, level III.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Transfusión de Sangre Autóloga/métodos , Infusiones Intraóseas , Resucitación , Esternón , Adulto , Conservación de la Sangre , Urgencias Médicas , Femenino , Hemólisis , Humanos , Infusiones Intraóseas/efectos adversos , Infusiones Intraóseas/métodos , Infusiones Intravenosas , Masculino , Agujas , Estudios Prospectivos , Resucitación/métodos , Adulto Joven
3.
J Trauma Acute Care Surg ; 84(6S Suppl 1): S89-S92, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29370054

RESUMEN

BACKGROUND: Limited blood inventory and resupply chains in combat settings can result in preventable deaths from traumatic hemorrhage. One way of mitigating this could be to establish donor pools where blood is collected in advance of high-risk missions and then reinfused back to the donor if not needed to treat casualties. METHODS: Four hundred fifty milliliters plus 56 mL of blood was collected, rested for 2 hours in room temperature, and stored at 4°C. The blood was reinfused 22 to 24 hours after donation and the donor observed for adverse reactions. Samples were collected before and 20 minutes after each donation for hematology, immunoglobulin G, ferritin, C-reactive protein, total protein, lactate dehydrogenase, bilirubin, haptoglobin, and activated partial thromboplastin time. RESULTS: Nine participants went through a total of 36 donation and reinfusion procedures. Four donors participated in five rounds, two in four rounds, two in three rounds, and one in two rounds. A significant drop was seen in hemoglobin (14.6 ± 0.9 to 13.9 ± 0.9) and ferritin (179 ± 70 to 149 ± 78) from before the first donation to after the last reinfusion (p < 0.05). Other parameters were unaffected. CONCLUSION: This small pilot study suggests that repeated donations and reinfusions may be both feasible and safe. Blood collected in this way should be labeled with the donor's full name and social security number (or similar) and the identity visually verified by the donor immediately before both donation and reinfusion. To further reduce risk, this form of donation should be restricted to scenarios where there is no other option for making blood available. LEVEL OF EVIDENCE: Therapeutic/Care management study, level V.


Asunto(s)
Donantes de Sangre , Transfusión de Sangre Autóloga , Adulto , Recolección de Muestras de Sangre , Transfusión de Sangre Autóloga/métodos , Humanos , Masculino , Persona de Mediana Edad , Medicina Militar/métodos , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA